These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25666794)

  • 1. NAD⁺/NADH metabolism and NAD⁺-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications.
    Ma Y; Nie H; Chen H; Li J; Hong Y; Wang B; Wang C; Zhang J; Cao W; Zhang M; Xu Y; Ding X; Yin SK; Qu X; Ying W
    Curr Med Chem; 2015; 22(10):1239-47. PubMed ID: 25666794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NAD+ and NADH in ischemic brain injury.
    Ying W
    Front Biosci; 2008 Jan; 13():1141-51. PubMed ID: 17981619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD+ metabolism and NAD(+)-dependent enzymes: promising therapeutic targets for neurological diseases.
    Ma Y; Chen H; He X; Nie H; Hong Y; Sheng C; Wang Q; Xia W; Ying W
    Curr Drug Targets; 2012 Feb; 13(2):222-9. PubMed ID: 22204321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD+ and NADH in cellular functions and cell death.
    Ying W
    Front Biosci; 2006 Sep; 11():3129-48. PubMed ID: 16720381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress and NAD+ in ischemic brain injury: current advances and future perspectives.
    Ying W; Xiong ZG
    Curr Med Chem; 2010; 17(20):2152-8. PubMed ID: 20423305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of NAD(+) / NADH and NADP(+) / NADPH in cell death.
    Xia W; Wang Z; Wang Q; Han J; Zhao C; Hong Y; Zeng L; Tang L; Ying W
    Curr Pharm Des; 2009; 15(1):12-9. PubMed ID: 19149598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of NAD (+) , PARP-1, and Sirtuins in Cell Death, Ischemic Brain Injury, and Synchrotron Radiation X-Ray-Induced Tissue Injury.
    Ying W
    Scientifica (Cairo); 2013; 2013():691251. PubMed ID: 24386592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.
    Cantó C; Sauve AA; Bai P
    Mol Aspects Med; 2013 Dec; 34(6):1168-201. PubMed ID: 23357756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury.
    Owens K; Park JH; Schuh R; Kristian T
    Transl Stroke Res; 2013 Dec; 4(6):618-34. PubMed ID: 24323416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adipose tissue NAD
    Jokinen R; Pirnes-Karhu S; Pietiläinen KH; Pirinen E
    Redox Biol; 2017 Aug; 12():246-263. PubMed ID: 28279944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.
    Long A; Park JH; Klimova N; Fowler C; Loane DJ; Kristian T
    Neurochem Res; 2017 Jan; 42(1):283-293. PubMed ID: 27518087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional roles of NAD⁺ and NADH in astrocytes.
    Wilhelm F; Hirrlinger J
    Neurochem Res; 2012 Nov; 37(11):2317-25. PubMed ID: 22476700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.
    Ying W
    Antioxid Redox Signal; 2008 Feb; 10(2):179-206. PubMed ID: 18020963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD
    Ogura Y; Kitada M; Xu J; Monno I; Koya D
    Aging (Albany NY); 2020 Jun; 12(12):11325-11336. PubMed ID: 32507768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence.
    Braidy N; Poljak A; Grant R; Jayasena T; Mansour H; Chan-Ling T; Guillemin GJ; Smythe G; Sachdev P
    Biogerontology; 2014 Apr; 15(2):177-98. PubMed ID: 24337988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons.
    Liu D; Gharavi R; Pitta M; Gleichmann M; Mattson MP
    Neuromolecular Med; 2009; 11(1):28-42. PubMed ID: 19288225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADH can enter into astrocytes and block poly(ADP-ribose) polymerase-1-mediated astrocyte death.
    Zhu K; Swanson RA; Ying W
    Neuroreport; 2005 Aug; 16(11):1209-12. PubMed ID: 16012350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The balance between NAD
    Strømland Ø; Diab J; Ferrario E; Sverkeli LJ; Ziegler M
    Mech Ageing Dev; 2021 Oct; 199():111569. PubMed ID: 34509469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Poly(ADP-ribose) Polymerase-1 Enhances Gene Expression of Selected Sirtuins and APP Cleaving Enzymes in Amyloid Beta Cytotoxicity.
    Wencel PL; Lukiw WJ; Strosznajder JB; Strosznajder RP
    Mol Neurobiol; 2018 Jun; 55(6):4612-4623. PubMed ID: 28698968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death.
    Fouquerel E; Sobol RW
    DNA Repair (Amst); 2014 Nov; 23():27-32. PubMed ID: 25283336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.