These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

866 related articles for article (PubMed ID: 25666799)

  • 21. Bacteriophages as an alternative strategy for fighting biofilm development.
    Parasion S; Kwiatek M; Gryko R; Mizak L; Malm A
    Pol J Microbiol; 2014; 63(2):137-45. PubMed ID: 25115107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application?
    Maciejewska B; Olszak T; Drulis-Kawa Z
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2563-2581. PubMed ID: 29442169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Basis for Lytic Bacteriophage Resistance in Enterococci.
    Duerkop BA; Huo W; Bhardwaj P; Palmer KL; Hooper LV
    mBio; 2016 Aug; 7(4):. PubMed ID: 27578757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.
    Malik DJ; Sokolov IJ; Vinner GK; Mancuso F; Cinquerrui S; Vladisavljevic GT; Clokie MRJ; Garton NJ; Stapley AGF; Kirpichnikova A
    Adv Colloid Interface Sci; 2017 Nov; 249():100-133. PubMed ID: 28688779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacteriophages and its applications: an overview.
    Sharma S; Chatterjee S; Datta S; Prasad R; Dubey D; Prasad RK; Vairale MG
    Folia Microbiol (Praha); 2017 Jan; 62(1):17-55. PubMed ID: 27718043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational models of populations of bacteria and lytic phage.
    Krysiak-Baltyn K; Martin GJ; Stickland AD; Scales PJ; Gras SL
    Crit Rev Microbiol; 2016 Nov; 42(6):942-68. PubMed ID: 26828960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages.
    Kim BO; Kim ES; Yoo YJ; Bae HW; Chung IY; Cho YH
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30889807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Lysis of bacterial cells in the process of bacteriophage release--canonical and newly discovered mechanisms].
    Woźnica WM; Bigos J; Łobocka MB
    Postepy Hig Med Dosw (Online); 2015 Jan; 69():114-26. PubMed ID: 25614679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofilm control with natural and genetically-modified phages.
    Motlagh AM; Bhattacharjee AS; Goel R
    World J Microbiol Biotechnol; 2016 Apr; 32(4):67. PubMed ID: 26931607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies.
    Mangalea MR; Duerkop BA
    Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32094257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phages amid antimicrobial resistance.
    Mohan Raj JR; Karunasagar I
    Crit Rev Microbiol; 2019; 45(5-6):701-711. PubMed ID: 31775552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections.
    Carvalho C; Costa AR; Silva F; Oliveira A
    Crit Rev Microbiol; 2017 Sep; 43(5):583-601. PubMed ID: 28071145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation.
    Schroven K; Aertsen A; Lavigne R
    FEMS Microbiol Rev; 2021 Jan; 45(1):. PubMed ID: 32897318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review: phage therapy: a modern tool to control bacterial infections.
    Qadir MI
    Pak J Pharm Sci; 2015 Jan; 28(1):265-70. PubMed ID: 25553704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phage Therapy: Going Temperate?
    Monteiro R; Pires DP; Costa AR; Azeredo J
    Trends Microbiol; 2019 Apr; 27(4):368-378. PubMed ID: 30466900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virulence-associated factors as targets for phage infection.
    de Melo AG; Morency C; Moineau S
    Curr Opin Microbiol; 2024 Jun; 79():102471. PubMed ID: 38569419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phage-based biocontrol strategies and their application in agriculture and aquaculture.
    Dy RL; Rigano LA; Fineran PC
    Biochem Soc Trans; 2018 Dec; 46(6):1605-1613. PubMed ID: 30514766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'.
    Hobbs Z; Abedon ST
    FEMS Microbiol Lett; 2016 Apr; 363(7):. PubMed ID: 26925588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going?
    Luong T; Salabarria AC; Roach DR
    Clin Ther; 2020 Sep; 42(9):1659-1680. PubMed ID: 32883528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Machinery of the Triad Holin, Endolysin, and Spanin: Key Players Orchestrating Bacteriophage-Induced Cell Lysis and their Therapeutic Applications.
    Samir S
    Protein Pept Lett; 2024; 31(2):85-96. PubMed ID: 38258777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.