BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25667076)

  • 1. Genome size stability despite high chromosome number variation in Carex gr. laevigata.
    Escudero M; Maguilla E; Loureiro J; Castro M; Castro S; Luceño M
    Am J Bot; 2015 Feb; 102(2):233-8. PubMed ID: 25667076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae).
    Chung KS; Weber JA; Hipp AL
    Am J Bot; 2011 Jan; 98(1):122-9. PubMed ID: 21613090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome number evolves independently of genome size in a clade with nonlocalized centromeres (Carex: Cyperaceae).
    Chung KS; Hipp AL; Roalson EH
    Evolution; 2012 Sep; 66(9):2708-22. PubMed ID: 22946798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Karyotype stability and predictors of chromosome number variation in sedges: a study in Carex section Spirostachyae (Cyperaceae).
    Escudero M; Hipp AL; Luceño M
    Mol Phylogenet Evol; 2010 Oct; 57(1):353-63. PubMed ID: 20655386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition.
    Lipnerová I; Bures P; Horová L; Smarda P
    Ann Bot; 2013 Jan; 111(1):79-94. PubMed ID: 23175591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Holokinetic drive: centromere drive in chromosomes without centromeres.
    Bureš P; Zedek F
    Evolution; 2014 Aug; 68(8):2412-20. PubMed ID: 24758327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae).
    Escudero M; Hipp AL; Waterway MJ; Valente LM
    Mol Phylogenet Evol; 2012 Jun; 63(3):650-5. PubMed ID: 22366369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes.
    Hipp AL; Rothrock PE; Whitkus R; Weber JA
    Mol Ecol; 2010 Aug; 19(15):3124-38. PubMed ID: 20618902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species coherence in the face of karyotype diversification in holocentric organisms: the case of a cytogenetically variable sedge (Carex scoparia, Cyperaceae).
    Escudero M; Weber JA; Hipp AL
    Ann Bot; 2013 Aug; 112(3):515-26. PubMed ID: 23723260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae).
    Hipp AL
    Evolution; 2007 Sep; 61(9):2175-94. PubMed ID: 17767589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal rearrangements in holocentric organisms lead to reproductive isolation by hybrid dysfunction: The correlation between karyotype rearrangements and germination rates in sedges.
    Escudero M; Hahn M; Brown BH; Lueders K; Hipp AL
    Am J Bot; 2016 Aug; 103(8):1529-36. PubMed ID: 27558707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae).
    Ribeiro T; Buddenhagen CE; Thomas WW; Souza G; Pedrosa-Harand A
    Protoplasma; 2018 Jan; 255(1):263-272. PubMed ID: 28844108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome numbers of Carex (Cyperaceae) and their taxonomic implications.
    Więcław H; Kalinka A; Koopman J
    PLoS One; 2020; 15(2):e0228353. PubMed ID: 32040511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae).
    Escudero M; Hipp AL; Hansen TF; Voje KL; Luceño M
    New Phytol; 2012 Jul; 195(1):237-47. PubMed ID: 22489934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny and chromosomal variations in East Asian Carex, Siderostictae group (Cyperaceae), based on DNA sequences and cytological data.
    Yano O; Ikeda H; Jin XF; Hoshino T
    J Plant Res; 2014; 127(1):99-107. PubMed ID: 23857080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAD-seq linkage mapping and patterns of segregation distortion in sedges: meiosis as a driver of karyotypic evolution in organisms with holocentric chromosomes.
    Escudero M; Hahn M; Hipp AL
    J Evol Biol; 2018 Jun; 31(6):833-843. PubMed ID: 29573004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Karyotype diversity and genome size variation in Neotropical Maxillariinae orchids.
    Moraes AP; Koehler S; Cabral JS; Gomes SS; Viccini LF; Barros F; Felix LP; Guerra M; Forni-Martins ER
    Plant Biol (Stuttg); 2017 Mar; 19(2):298-308. PubMed ID: 27917576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Founder events and subsequent genetic bottlenecks underlie karyotype evolution in the Ibero-North African endemic Carex helodes.
    Escudero M; Arroyo JM; Sánchez-Ramírez S; Jordano P
    Ann Bot; 2024 May; 133(5-6):871-882. PubMed ID: 37400416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome size shifts: karyotype evolution in Crepis section Neglectoides (Asteraceae).
    Enke N; Kunze R; Pustahija F; Glöckner G; Zimmermann J; Oberländer J; Kamari G; Siljak-Yakovlev S
    Plant Biol (Stuttg); 2015 Jul; 17(4):775-86. PubMed ID: 25683604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution.
    Jankowska M; Fuchs J; Klocke E; Fojtová M; Polanská P; Fajkus J; Schubert V; Houben A
    Chromosoma; 2015 Dec; 124(4):519-28. PubMed ID: 26062516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.