These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 25667505)
1. What do we learn from the genome-wide perspective on vitamin D3? Carlberg C Anticancer Res; 2015 Feb; 35(2):1143-51. PubMed ID: 25667505 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes. Seuter S; Pehkonen P; Heikkinen S; Carlberg C Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide (over)view on the actions of vitamin D. Carlberg C Front Physiol; 2014; 5():167. PubMed ID: 24808867 [TBL] [Abstract][Full Text] [Related]
4. Molecular endocrinology of vitamin D on the epigenome level. Carlberg C Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703 [TBL] [Abstract][Full Text] [Related]
5. The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages. Seuter S; Ryynänen J; Carlberg C J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():12-8. PubMed ID: 23999061 [TBL] [Abstract][Full Text] [Related]
6. The first genome-wide view of vitamin D receptor locations and their mechanistic implications. Carlberg C; Seuter S; Heikkinen S Anticancer Res; 2012 Jan; 32(1):271-82. PubMed ID: 22213316 [TBL] [Abstract][Full Text] [Related]
8. Characterization of genomic vitamin D receptor binding sites through chromatin looping and opening. Seuter S; Neme A; Carlberg C PLoS One; 2014; 9(4):e96184. PubMed ID: 24763502 [TBL] [Abstract][Full Text] [Related]
9. The transcriptional regulator BCL6 participates in the secondary gene regulatory response to vitamin D. Nurminen V; Neme A; Ryynänen J; Heikkinen S; Seuter S; Carlberg C Biochim Biophys Acta; 2015 Mar; 1849(3):300-8. PubMed ID: 25482012 [TBL] [Abstract][Full Text] [Related]
10. Vitamin D-dependent chromatin association of CTCF in human monocytes. Neme A; Seuter S; Carlberg C Biochim Biophys Acta; 2016 Nov; 1859(11):1380-1388. PubMed ID: 27569350 [TBL] [Abstract][Full Text] [Related]
11. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138 [TBL] [Abstract][Full Text] [Related]
12. VDR primary targets by genome-wide transcriptional profiling. Goeman F; De Nicola F; D'Onorio De Meo P; Pallocca M; Elmi B; Castrignanò T; Pesole G; Strano S; Blandino G; Fanciulli M; Muti P J Steroid Biochem Mol Biol; 2014 Sep; 143():348-56. PubMed ID: 24726990 [TBL] [Abstract][Full Text] [Related]
13. Molecular network of chromatin immunoprecipitation followed by deep sequencing-based vitamin D receptor target genes. Satoh J; Tabunoki H Mult Scler; 2013 Jul; 19(8):1035-45. PubMed ID: 23401126 [TBL] [Abstract][Full Text] [Related]
14. Interaction of two novel 14-epivitamin D3 analogs with vitamin D3 receptor-retinoid X receptor heterodimers on vitamin D3 responsive elements. Verlinden L; Verstuyf A; Quack M; Van Camp M; Van Etten E; De Clercq P; Vandewalle M; Carlberg C; Bouillon R J Bone Miner Res; 2001 Apr; 16(4):625-38. PubMed ID: 11315990 [TBL] [Abstract][Full Text] [Related]
15. Minireview: vitamin D receptor: new assignments for an already busy receptor. Norman AW Endocrinology; 2006 Dec; 147(12):5542-8. PubMed ID: 16946007 [TBL] [Abstract][Full Text] [Related]
16. The impact of chromatin organization of vitamin D target genes. Carlberg C; Dunlop TW Anticancer Res; 2006; 26(4A):2637-45. PubMed ID: 16886674 [TBL] [Abstract][Full Text] [Related]
17. Primary vitamin D receptor target genes as biomarkers for the vitamin D3 status in the hematopoietic system. Wilfinger J; Seuter S; Tuomainen TP; Virtanen JK; Voutilainen S; Nurmi T; de Mello VD; Uusitupa M; Carlberg C J Nutr Biochem; 2014 Aug; 25(8):875-84. PubMed ID: 24854954 [TBL] [Abstract][Full Text] [Related]
18. The impact of the vitamin D-modulated epigenome on VDR target gene regulation. Nurminen V; Neme A; Seuter S; Carlberg C Biochim Biophys Acta Gene Regul Mech; 2018 Aug; 1861(8):697-705. PubMed ID: 30018005 [TBL] [Abstract][Full Text] [Related]
19. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Wang TT; Tavera-Mendoza LE; Laperriere D; Libby E; MacLeod NB; Nagai Y; Bourdeau V; Konstorum A; Lallemant B; Zhang R; Mader S; White JH Mol Endocrinol; 2005 Nov; 19(11):2685-95. PubMed ID: 16002434 [TBL] [Abstract][Full Text] [Related]
20. The vitamin D-dependent transcriptome of human monocytes. Neme A; Nurminen V; Seuter S; Carlberg C J Steroid Biochem Mol Biol; 2016 Nov; 164():180-187. PubMed ID: 26523676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]