These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25668021)

  • 21. Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles.
    Casellas D; Moore LC
    Am J Physiol; 1990 Mar; 258(3 Pt 2):F660-9. PubMed ID: 2316670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors.
    Sun D; Samuelson LC; Yang T; Huang Y; Paliege A; Saunders T; Briggs J; Schnermann J
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9983-8. PubMed ID: 11504952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Connecting tubule glomerular feedback mediates tubuloglomerular feedback resetting after unilateral nephrectomy.
    Monu SR; Ren Y; Masjoan-Juncos JX; Kutskill K; Wang H; Kumar N; Peterson EL; Carretero OA
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F806-F811. PubMed ID: 28424211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of adenosine in signal transmission of tubuloglomerular feedback.
    Osswald H; Hermes HH; Nabakowski G
    Kidney Int Suppl; 1982 Aug; 12():S136-42. PubMed ID: 6957669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosstalk between the connecting tubule and the afferent arteriole regulates renal microcirculation.
    Ren Y; Garvin JL; Liu R; Carretero OA
    Kidney Int; 2007 Jun; 71(11):1116-21. PubMed ID: 17361114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa.
    Wang L; Shen C; Liu H; Wang S; Chen X; Roman RJ; Juncos LA; Lu Y; Wei J; Zhang J; Yip KP; Liu R
    Am J Physiol Regul Integr Comp Physiol; 2015 Oct; 309(7):R757-66. PubMed ID: 26269519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of carbon monoxide attenuation of tubuloglomerular feedback.
    Ren Y; D'Ambrosio MA; Wang H; Falck JR; Peterson EL; Garvin JL; Carretero OA
    Hypertension; 2012 Jun; 59(6):1139-44. PubMed ID: 22508834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of inhibition of the Na+/K+/2Cl- cotransporter on myogenic and angiotensin II responses of the rat afferent arteriole.
    Wang X; Breaks J; Loutzenhiser K; Loutzenhiser R
    Am J Physiol Renal Physiol; 2007 Mar; 292(3):F999-F1006. PubMed ID: 17090779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tubuloglomerular feedback: new concepts and developments.
    Schnermann J; Traynor T; Yang T; Arend L; Huang YG; Smart A; Briggs JP
    Kidney Int Suppl; 1998 Sep; 67():S40-5. PubMed ID: 9736251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depolarization of the macula densa induces superoxide production via NAD(P)H oxidase.
    Liu R; Garvin JL; Ren Y; Pagano PJ; Carretero OA
    Am J Physiol Renal Physiol; 2007 Jun; 292(6):F1867-72. PubMed ID: 17344185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tubuloglomerular feedback.
    Ito S; Abe K
    Jpn Heart J; 1996 Mar; 37(2):153-63. PubMed ID: 8676542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordination of kidney filtration and tubular reabsorption: considerations on the regulation of metabolic demand for tubular reabsorption.
    Blantz RC; Deng A
    Acta Physiol Hung; 2007 Mar; 94(1-2):83-94. PubMed ID: 17444277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The regulatory mechanisms of glomerular filtration: the tubuloglomerular feedback system, physiological aspects and their participation in the physiopathology of kidney diseases].
    Franco Guevara M; Navar LG; Herrera-Acosta J; Bell D
    Gac Med Mex; 1994; 130(3):139-45; discussion 146-7. PubMed ID: 7657077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of ecto-5'-nucleotidase by NaCl and nitric oxide: potential roles in tubuloglomerular feedback and adaptation.
    Satriano J; Wead L; Cardus A; Deng A; Boss GR; Thomson SC; Blantz RC
    Am J Physiol Renal Physiol; 2006 Nov; 291(5):F1078-82. PubMed ID: 16705150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the renin-angiotensin system in tubuloglomerular feedback.
    Schnermann J; Briggs J
    Fed Proc; 1986 Apr; 45(5):1426-30. PubMed ID: 3514279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blunted tubuloglomerular feedback by absence of angiotensin type 1A receptor involves neuronal NOS.
    Ichihara A; Hayashi M; Koura Y; Tada Y; Sugaya T; Hirota N; Saruta T
    Hypertension; 2002 Dec; 40(6):934-9. PubMed ID: 12468582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation.
    Feldberg R; Colding-Jørgensen M; Holstein-Rathlou NH
    Am J Physiol; 1995 Oct; 269(4 Pt 2):F581-93. PubMed ID: 7485545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chloride conductance of mesangial cells. Insights into the transcellular signaling of tubuloglomerular feedback and its physiological significance.
    Kurokawa K
    Ren Physiol Biochem; 1993; 16(1-2):15-20. PubMed ID: 7684143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adenosine mediates tubuloglomerular feedback response: an element of metabolic control of kidney function.
    Osswald H; Mühlbauer B; Schenk F
    Kidney Int Suppl; 1991 Jun; 32():S128-31. PubMed ID: 1881037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation.
    Walker M; Harrison-Bernard LM; Cook AK; Navar LG
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F858-65. PubMed ID: 11053046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.