BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 25668049)

  • 1. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior.
    Zhao C; Lu X; Zanden C; Liu J
    Biomed Mater; 2015 Feb; 10(1):015019. PubMed ID: 25668049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green chemistry approach for the synthesis of biocompatible graphene.
    Gurunathan S; Han JW; Kim JH
    Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.
    Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH
    Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating.
    Tasnim N; Kumar A; Joddar B
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():788-797. PubMed ID: 28183673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suspended graphene oxide nanoparticle for accelerated multilayer osteoblast attachment.
    Foroutan T; Nazemi N; Tavana M; Kassaee MZ; Motamedi E; Soieshargh S; Zare Zardini H
    J Biomed Mater Res A; 2018 Jan; 106(1):293-303. PubMed ID: 28891194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites.
    Lee JH; Shin YC; Lee SM; Jin OS; Kang SH; Hong SW; Jeong CM; Huh JB; Han DW
    Sci Rep; 2015 Dec; 5():18833. PubMed ID: 26685901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Dependent Effects of Suspended Graphene Oxide Nanoparticles on the Cellular Fate of Mouse Neural Stem Cells.
    Lin L; Zhuang X; Huang R; Song S; Wang Z; Wang S; Cheng L; Zhu R
    Int J Nanomedicine; 2020; 15():1421-1435. PubMed ID: 32184596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofabrication of a novel biomolecule-assisted reduced graphene oxide: an excellent biocompatible nanomaterial.
    Zhang XF; Gurunathan S
    Int J Nanomedicine; 2016; 11():6635-6649. PubMed ID: 27994461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Highly Proliferated Bilayer Coating on 316L Stainless Steel Implants.
    Khosravi F; Nouri Khorasani S; Khalili S; Esmaeely Neisiany R; Rezvani Ghomi E; Ejeian F; Das O; Nasr-Esfahani MH
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32369977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of interaction of L-929 cells with functionalized graphene via COOH
    Zhao ML; Liu XQ; Cao Y; Li XF; Li DJ; Sun XL; Gu HQ; Wan RX
    Sci Rep; 2016 Nov; 6():37112. PubMed ID: 27845420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide/ε-poly-L-lysine self-assembled functionalized coatings improve the biocompatibility and antibacterial properties of titanium implants.
    You X; Wang Z; Wang L; Liu Y; Chen H; Lan X; Guo L
    Front Bioeng Biotechnol; 2024; 12():1381685. PubMed ID: 38638320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene.
    Gurunathan S; Woong Han J; Kim E; Kwon DN; Park JK; Kim JH
    J Nanobiotechnology; 2014 Oct; 12():41. PubMed ID: 25273520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.
    Tavafoghi M; Brodusch N; Gauvin R; Cerruti M
    J R Soc Interface; 2016 Jan; 13(114):20150986. PubMed ID: 26791001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Graphene Oxide Nanofilm and Chicken Embryo Muscle Extract on Muscle Progenitor Cell Differentiation and Contraction.
    Bałaban J; Wierzbicki M; Zielińska M; Szczepaniak J; Sosnowska M; Daniluk K; Cysewski D; Koczoń P; Chwalibog A; Sawosz E
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Antifouling Properties of Alumina Nanoporous Membranes by GO/MOF Impregnated Polymer Coatings: In Vitro Studies.
    Moaness M; El-Sayed SAM; Beherei HH; Mabrouk M
    J Funct Biomater; 2024 Feb; 15(3):. PubMed ID: 38535243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility of Graphene Oxide.
    Wang K; Ruan J; Song H; Zhang J; Wo Y; Guo S; Cui D
    Nanoscale Res Lett; 2011 Dec; 6(1):8. PubMed ID: 27502632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial coatings based on amine-terminated graphene oxide and Nafion with remarkable thermal resistance.
    Beg MS; Gibbons EN; Gavalas S; Holden MA; Krysmann M; Kelarakis A
    Nanoscale Adv; 2024 May; 6(10):2594-2601. PubMed ID: 38752132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional cell-culture platform for aligned cell sheet monitoring, transfer printing, and therapy.
    Kim SJ; Cho HR; Cho KW; Qiao S; Rhim JS; Soh M; Kim T; Choi MK; Choi C; Park I; Hwang NS; Hyeon T; Choi SH; Lu N; Kim DH
    ACS Nano; 2015 Mar; 9(3):2677-88. PubMed ID: 25687418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration.
    Fang H; Zhu D; Yang Q; Chen Y; Zhang C; Gao J; Gao Y
    J Nanobiotechnology; 2022 Jan; 20(1):26. PubMed ID: 34991600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene and its Derivatives for Bone Tissue Engineering:
    Cheng J; Liu J; Wu B; Liu Z; Li M; Wang X; Tang P; Wang Z
    Front Bioeng Biotechnol; 2021; 9():734688. PubMed ID: 34660555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.