These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 25668488)
1. Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer. Farnum BH; Morseth ZA; Brennaman MK; Papanikolas JM; Meyer TJ J Phys Chem B; 2015 Jun; 119(24):7698-711. PubMed ID: 25668488 [TBL] [Abstract][Full Text] [Related]
2. Driving force dependent, photoinduced electron transfer at degenerately doped, optically transparent semiconductor nanoparticle interfaces. Farnum BH; Morseth ZA; Brennaman MK; Papanikolas JM; Meyer TJ J Am Chem Soc; 2014 Nov; 136(45):15869-72. PubMed ID: 25330285 [TBL] [Abstract][Full Text] [Related]
3. Electron Transfer Reorganization Energies in the Electrode-Electrolyte Double Layer. Bangle RE; Schneider J; Piechota EJ; Troian-Gautier L; Meyer GJ J Am Chem Soc; 2020 Jan; 142(2):674-679. PubMed ID: 31859498 [TBL] [Abstract][Full Text] [Related]
4. Ligand structure, conformational dynamics, and excited-state electron delocalization for control of photoinduced electron transfer rates in synthetic donor-bridge-acceptor systems. Meylemans HA; Lei CF; Damrauer NH Inorg Chem; 2008 May; 47(10):4060-76. PubMed ID: 18407628 [TBL] [Abstract][Full Text] [Related]
5. Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces. Aramburu-Trošelj BM; Bangle RE; Meyer GJ J Chem Phys; 2020 Oct; 153(13):134702. PubMed ID: 33032431 [TBL] [Abstract][Full Text] [Related]
6. Photoinduced interfacial electron transfer within a mesoporous transparent conducting oxide film. Farnum BH; Morseth ZA; Lapides AM; Rieth AJ; Hoertz PG; Brennaman MK; Papanikolas JM; Meyer TJ J Am Chem Soc; 2014 Feb; 136(6):2208-11. PubMed ID: 24460093 [TBL] [Abstract][Full Text] [Related]
7. Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts. Schneider J; Bangle RE; Swords WB; Troian-Gautier L; Meyer GJ J Am Chem Soc; 2019 Jun; 141(25):9758-9763. PubMed ID: 31194527 [TBL] [Abstract][Full Text] [Related]
8. Distinguishing between Dexter and rapid sequential electron transfer in covalently linked donor-acceptor assemblies. Soler M; McCusker JK J Am Chem Soc; 2008 Apr; 130(14):4708-24. PubMed ID: 18341336 [TBL] [Abstract][Full Text] [Related]
9. Reorganization Energies for Interfacial Electron Transfer across Phenylene Ethynylene Rigid-Rod Bridges. Heidari M; Loague Q; Bangle RE; Galoppini E; Meyer GJ ACS Appl Mater Interfaces; 2022 Aug; 14(30):35205-35214. PubMed ID: 35862637 [TBL] [Abstract][Full Text] [Related]
10. Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst. Kessinger M; Soudackov AV; Schneider J; Bangle RE; Hammes-Schiffer S; Meyer GJ J Am Chem Soc; 2022 Nov; 144(44):20514-20524. PubMed ID: 36314899 [TBL] [Abstract][Full Text] [Related]
11. Toward exceeding the Shockley-Queisser limit: photoinduced interfacial charge transfer processes that store energy in excess of the equilibrated excited state. Hoertz PG; Staniszewski A; Marton A; Higgins GT; Incarvito CD; Rheingold AL; Meyer GJ J Am Chem Soc; 2006 Jun; 128(25):8234-45. PubMed ID: 16787088 [TBL] [Abstract][Full Text] [Related]
12. Resolving electron injection from singlet fission-borne triplets into mesoporous transparent conducting oxides. Gish MK; Raulerson EK; Pekarek RT; Greenaway AL; Thorley KJ; Neale NR; Anthony JE; Johnson JC Chem Sci; 2021 Aug; 12(33):11146-11156. PubMed ID: 34522312 [TBL] [Abstract][Full Text] [Related]
13. Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO2. Zigler DF; Morseth ZA; Wang L; Ashford DL; Brennaman MK; Grumstrup EM; Brigham EC; Gish MK; Dillon RJ; Alibabaei L; Meyer GJ; Meyer TJ; Papanikolas JM J Am Chem Soc; 2016 Apr; 138(13):4426-38. PubMed ID: 26974040 [TBL] [Abstract][Full Text] [Related]
14. Impact of Molecular Orientation on Lateral and Interfacial Electron Transfer at Oxide Interfaces. Loague Q; Keller ND; Müller AV; Aramburu-Trošelj BM; Bangle RE; Schneider J; Sampaio RN; Polo AS; Meyer GJ ACS Appl Mater Interfaces; 2023 Jul; 15(28):34249-34262. PubMed ID: 37417666 [TBL] [Abstract][Full Text] [Related]
15. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap. Hankache J; Wenger OS Phys Chem Chem Phys; 2012 Feb; 14(8):2685-92. PubMed ID: 22258761 [TBL] [Abstract][Full Text] [Related]
17. Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces. Hamann TW; Gstrein F; Brunschwig BS; Lewis NS J Am Chem Soc; 2005 Oct; 127(40):13949-54. PubMed ID: 16201817 [TBL] [Abstract][Full Text] [Related]
18. Probing Driving Force and Electron Accepting State Density Dependent Interfacial Electron Transfer Dynamics: Suppressed Fluorescence Blinking of Single Molecules on Indium Tin Oxide Semiconductor. Rao VG; Dhital B; Lu HP J Phys Chem B; 2016 Mar; 120(8):1685-97. PubMed ID: 26468609 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of metal-metal coupling at a considerable distance by using 4-pyridinealdazine as a bridging ligand in polynuclear complexes of rhenium and ruthenium. Cattaneo M; Fagalde F; Katz NE; Leiva AM; Schmehl R Inorg Chem; 2006 Jan; 45(1):127-36. PubMed ID: 16390048 [TBL] [Abstract][Full Text] [Related]
20. Ground vs. excited state electron transfer: adsorbed monolayers and trimers in solution. Brennan JL; Howlett M; Forster RJ Faraday Discuss; 2002; (121):391-403;discussion 441-62. PubMed ID: 12227581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]