BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25668488)

  • 1. Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer.
    Farnum BH; Morseth ZA; Brennaman MK; Papanikolas JM; Meyer TJ
    J Phys Chem B; 2015 Jun; 119(24):7698-711. PubMed ID: 25668488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving force dependent, photoinduced electron transfer at degenerately doped, optically transparent semiconductor nanoparticle interfaces.
    Farnum BH; Morseth ZA; Brennaman MK; Papanikolas JM; Meyer TJ
    J Am Chem Soc; 2014 Nov; 136(45):15869-72. PubMed ID: 25330285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron Transfer Reorganization Energies in the Electrode-Electrolyte Double Layer.
    Bangle RE; Schneider J; Piechota EJ; Troian-Gautier L; Meyer GJ
    J Am Chem Soc; 2020 Jan; 142(2):674-679. PubMed ID: 31859498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand structure, conformational dynamics, and excited-state electron delocalization for control of photoinduced electron transfer rates in synthetic donor-bridge-acceptor systems.
    Meylemans HA; Lei CF; Damrauer NH
    Inorg Chem; 2008 May; 47(10):4060-76. PubMed ID: 18407628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces.
    Aramburu-Trošelj BM; Bangle RE; Meyer GJ
    J Chem Phys; 2020 Oct; 153(13):134702. PubMed ID: 33032431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced interfacial electron transfer within a mesoporous transparent conducting oxide film.
    Farnum BH; Morseth ZA; Lapides AM; Rieth AJ; Hoertz PG; Brennaman MK; Papanikolas JM; Meyer TJ
    J Am Chem Soc; 2014 Feb; 136(6):2208-11. PubMed ID: 24460093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts.
    Schneider J; Bangle RE; Swords WB; Troian-Gautier L; Meyer GJ
    J Am Chem Soc; 2019 Jun; 141(25):9758-9763. PubMed ID: 31194527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing between Dexter and rapid sequential electron transfer in covalently linked donor-acceptor assemblies.
    Soler M; McCusker JK
    J Am Chem Soc; 2008 Apr; 130(14):4708-24. PubMed ID: 18341336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorganization Energies for Interfacial Electron Transfer across Phenylene Ethynylene Rigid-Rod Bridges.
    Heidari M; Loague Q; Bangle RE; Galoppini E; Meyer GJ
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35205-35214. PubMed ID: 35862637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst.
    Kessinger M; Soudackov AV; Schneider J; Bangle RE; Hammes-Schiffer S; Meyer GJ
    J Am Chem Soc; 2022 Nov; 144(44):20514-20524. PubMed ID: 36314899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward exceeding the Shockley-Queisser limit: photoinduced interfacial charge transfer processes that store energy in excess of the equilibrated excited state.
    Hoertz PG; Staniszewski A; Marton A; Higgins GT; Incarvito CD; Rheingold AL; Meyer GJ
    J Am Chem Soc; 2006 Jun; 128(25):8234-45. PubMed ID: 16787088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving electron injection from singlet fission-borne triplets into mesoporous transparent conducting oxides.
    Gish MK; Raulerson EK; Pekarek RT; Greenaway AL; Thorley KJ; Neale NR; Anthony JE; Johnson JC
    Chem Sci; 2021 Aug; 12(33):11146-11156. PubMed ID: 34522312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO2.
    Zigler DF; Morseth ZA; Wang L; Ashford DL; Brennaman MK; Grumstrup EM; Brigham EC; Gish MK; Dillon RJ; Alibabaei L; Meyer GJ; Meyer TJ; Papanikolas JM
    J Am Chem Soc; 2016 Apr; 138(13):4426-38. PubMed ID: 26974040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Molecular Orientation on Lateral and Interfacial Electron Transfer at Oxide Interfaces.
    Loague Q; Keller ND; Müller AV; Aramburu-Trošelj BM; Bangle RE; Schneider J; Sampaio RN; Polo AS; Meyer GJ
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34249-34262. PubMed ID: 37417666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.
    Hankache J; Wenger OS
    Phys Chem Chem Phys; 2012 Feb; 14(8):2685-92. PubMed ID: 22258761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces.
    Hamann TW; Gstrein F; Brunschwig BS; Lewis NS
    J Am Chem Soc; 2005 Oct; 127(40):13949-54. PubMed ID: 16201817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Driving Force and Electron Accepting State Density Dependent Interfacial Electron Transfer Dynamics: Suppressed Fluorescence Blinking of Single Molecules on Indium Tin Oxide Semiconductor.
    Rao VG; Dhital B; Lu HP
    J Phys Chem B; 2016 Mar; 120(8):1685-97. PubMed ID: 26468609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of metal-metal coupling at a considerable distance by using 4-pyridinealdazine as a bridging ligand in polynuclear complexes of rhenium and ruthenium.
    Cattaneo M; Fagalde F; Katz NE; Leiva AM; Schmehl R
    Inorg Chem; 2006 Jan; 45(1):127-36. PubMed ID: 16390048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground vs. excited state electron transfer: adsorbed monolayers and trimers in solution.
    Brennan JL; Howlett M; Forster RJ
    Faraday Discuss; 2002; (121):391-403;discussion 441-62. PubMed ID: 12227581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.