These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25669263)

  • 41. The ability to recognize objects from bottlenose dolphin (Tursiops truncatus) echoes generalizes across multiple orientations in humans and neural networks.
    DeLong CM; Heberle AL; Wisniewski MG; Mercado E
    Anim Cogn; 2014 May; 17(3):543-57. PubMed ID: 24072644
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nearfield and farfield measurements of dolphin echolocation beam patterns: No evidence of focusing.
    Finneran JJ; Mulsow J; Branstetter B; Moore P; Houser DS
    J Acoust Soc Am; 2016 Aug; 140(2):1346. PubMed ID: 27586761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in consistency patterns of click frequency content over time of an echolocating Atlantic bottlenose dolphin.
    Ibsen SD; Au WW; Nachtigall PE; DeLong CM; Breese M
    J Acoust Soc Am; 2010 Jun; 127(6):3821-9. PubMed ID: 20550280
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Separating overlapping click trains originating from multiple individuals in echolocation recordings.
    Starkhammar J; Nilsson J; Amundin M; Kuczaj SA; Almqvist M; Persson HW
    J Acoust Soc Am; 2011 Jan; 129(1):458-66. PubMed ID: 21303025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Behavioral responses of two captive bottlenose dolphins (Tursiops truncatus) to a continuous 50 kHz tone.
    Niu FQ; Liu ZW; Wen HT; Xu DW; Yang YM
    J Acoust Soc Am; 2012 Feb; 131(2):1643-9. PubMed ID: 22352534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phantom echo highlight amplitude and temporal difference resolutions of an echolocating dolphin, Tursiops truncatus.
    Muller MW; Au WW; Nachtigall PE; Allen JS; Breese M
    J Acoust Soc Am; 2007 Oct; 122(4):2255-62. PubMed ID: 17902861
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bottlenose dolphin (Tursiops truncatus) steady-state evoked responses to multiple simultaneous sinusoidal amplitude modulated tones.
    Finneran JJ; Houser DS
    J Acoust Soc Am; 2007 Mar; 121(3):1775-82. PubMed ID: 17407914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evoked response study tool: a portable, rugged system for single and multiple auditory evoked potential measurements.
    Finneran JJ
    J Acoust Soc Am; 2009 Jul; 126(1):491-500. PubMed ID: 19603907
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Human listeners provide insights into echo features used by dolphins (Tursiops truncatus) to discriminate among objects.
    Delong CM; Au WW; Harley HE; Roitblat HL; Pytka L
    J Comp Psychol; 2007 Aug; 121(3):306-19. PubMed ID: 17696657
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expectancy and conditioned hearing levels in the bottlenose dolphin (Tursiops truncatus).
    Nachtigall PE; Supin AY; Smith AB; Pacini AF
    J Exp Biol; 2016 Mar; 219(Pt 6):844-50. PubMed ID: 26787478
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A re-evaluation of auditory filter shape in delphinid odontocetes: evidence of constant-bandwidth filters.
    Lemonds DW; Kloepper LN; Nachtigall PE; Au WW; Vlachos SA; Branstetter BK
    J Acoust Soc Am; 2011 Nov; 130(5):3107-14. PubMed ID: 22087939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chronotopically organized target-distance map in the auditory cortex of the short-tailed fruit bat.
    Hagemann C; Esser KH; Kössl M
    J Neurophysiol; 2010 Jan; 103(1):322-33. PubMed ID: 19906883
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises.
    Au WW; Benoit-Bird KJ; Kastelein RA
    J Acoust Soc Am; 2007 Jun; 121(6):3954-62. PubMed ID: 17552742
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The recovery of the reactivity of the auditory system in the dolphin Tursiops truncatus to paired acoustic stimuli with different spectra].
    Klishin VO; Popov VV; Supin AIa
    Zh Evol Biokhim Fiziol; 1991; 27(3):314-9. PubMed ID: 1767609
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Narrow sound pressure level tuning in the auditory cortex of the bats Molossus molossus and Macrotus waterhousii.
    Macías S; Hechavarría JC; Cobo A; Mora EC
    Hear Res; 2014 Mar; 309():36-43. PubMed ID: 24269749
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Frequency-dependent variation in the two-dimensional beam pattern of an echolocating dolphin.
    Starkhammar J; Moore PW; Talmadge L; Houser DS
    Biol Lett; 2011 Dec; 7(6):836-9. PubMed ID: 21561965
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discrimination of amplitude-modulated synthetic echo trains by an echolocating bottlenose dolphin.
    Dankiewicz LA; Helweg DA; Moore PW; Zafran JM
    J Acoust Soc Am; 2002 Oct; 112(4):1702-8. PubMed ID: 12398475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dolphin echo-delay resolution measured with a jittered-echo paradigm.
    Finneran JJ; Jones R; Guazzo RA; Strahan MG; Mulsow J; Houser DS; Branstetter BK; Moore PW
    J Acoust Soc Am; 2020 Jul; 148(1):374. PubMed ID: 32752735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Whistle source levels of free-ranging bottlenose dolphins and Atlantic spotted dolphins in the Gulf of Mexico.
    Frankel AS; Zeddies D; Simard P; Mann D
    J Acoust Soc Am; 2014 Mar; 135(3):1624-31. PubMed ID: 24606297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evoked-potential recovery during double click stimulation in a whale: a possibility of biosonar automatic gain control.
    Supin AY; Nachtigall PE; Breese M
    J Acoust Soc Am; 2007 Jan; 121(1):618-25. PubMed ID: 17297815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.