These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25669273)

  • 1. A time-domain numerical modeling of two-dimensional wave propagation in porous media with frequency-dependent dynamic permeability.
    Blanc E; Chiavassa G; Lombard B
    J Acoust Soc Am; 2013 Dec; 134(6):4610. PubMed ID: 25669273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generalized recursive convolution method for time-domain propagation in porous media.
    Dragna D; Pineau P; Blanc-Benon P
    J Acoust Soc Am; 2015 Aug; 138(2):1030-42. PubMed ID: 26328719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave equations for porous media described by the Biot model.
    Chandrasekaran SN; Näsholm SP; Holm S
    J Acoust Soc Am; 2022 Apr; 151(4):2576. PubMed ID: 35461498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.
    Hejranfar K; Ezzatneshan E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces.
    Deng S
    Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An equivalent fluid model based finite-difference time-domain algorithm for sound propagation in porous material with rigid frame.
    Zhao J; Bao M; Wang X; Lee H; Sakamoto S
    J Acoust Soc Am; 2018 Jan; 143(1):130. PubMed ID: 29390758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.
    Wan X; Li Z
    Discrete Continuous Dyn Syst Ser B; 2012 Jun; 17(4):1155-1174. PubMed ID: 22701346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite volume hydromechanical simulation in porous media.
    Nordbotten JM
    Water Resour Res; 2014 May; 50(5):4379-4394. PubMed ID: 25574061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh.
    Li Y; LeBoeuf EJ; Basu PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046711. PubMed ID: 16383571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional finite-difference time-domain formulation for sound propagation in a temperature-dependent elastomer-fluid medium.
    Huang Y; Hou H; Oterkus S; Wei Z; Gao N
    J Acoust Soc Am; 2020 Jan; 147(1):428. PubMed ID: 32007005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MIB Galerkin method for elliptic interface problems.
    Xia K; Zhan M; Wei GW
    J Comput Appl Math; 2014 Dec; 272():195-220. PubMed ID: 24999292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling three-dimensional elastic wave propagation in circular cylindrical structures using a finite-difference approach.
    Gsell D; Leutenegger T; Dual J
    J Acoust Soc Am; 2004 Dec; 116(6):3284-93. PubMed ID: 15658680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method.
    Treeby BE; Jaros J; Rendell AP; Cox BT
    J Acoust Soc Am; 2012 Jun; 131(6):4324-36. PubMed ID: 22712907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue.
    Montejo LD; Klose AD; Hielscher AH
    Biomed Opt Express; 2010 Sep; 1(3):861-878. PubMed ID: 21258514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability analysis of second- and fourth-order finite-difference modelling of wave propagation in orthotropic media.
    Veres IA
    Ultrasonics; 2010 Mar; 50(3):431-8. PubMed ID: 19913266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods.
    Basiri Parsa A; Rashidi MM; Anwar Bég O; Sadri SM
    Comput Biol Med; 2013 Sep; 43(9):1142-53. PubMed ID: 23930807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-domain simulation of ultrasound propagation with fractional Laplacians for lossy-medium biological tissues with complicated geometries.
    Zhang J; Zheng ZC; Ke G
    J Acoust Soc Am; 2019 Jan; 145(1):589. PubMed ID: 30710970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling ultrasonic transient scattering from biological tissues including their dispersive properties directly in the time domain.
    Norton GV; Novarini JC
    Mol Cell Biomech; 2007 Jun; 4(2):75-85. PubMed ID: 17937112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material.
    Fellah ZE; Fellah M; Lauriks W; Depollier C
    J Acoust Soc Am; 2003 Jan; 113(1):61-72. PubMed ID: 12558247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.