BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25669276)

  • 1. Generalized equation for transient-wave propagation in continuous inhomogeneous rigid-frame porous materials at low frequencies.
    Fellah M; Fellah ZE; Ogam E; Mitri FG; Depollier C
    J Acoust Soc Am; 2013 Dec; 134(6):4642. PubMed ID: 25669276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized hyperbolic fractional equation for transient-wave propagation in layered rigid-frame porous materials.
    Fellah M; Fellah ZE; Depollier C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016601. PubMed ID: 18351945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring static thermal permeability and inertial factor of rigid porous materials (L).
    Sadouki M; Fellah M; Fellah ZE; Ogam E; Sebaa N; Mitri FG; Depollier C
    J Acoust Soc Am; 2011 Nov; 130(5):2627-30. PubMed ID: 22087887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W
    Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material.
    Fellah ZE; Fellah M; Lauriks W; Depollier C
    J Acoust Soc Am; 2003 Jan; 113(1):61-72. PubMed ID: 12558247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple scattering of acoustic waves and porous absorbing media.
    Tournat V; Pagneux V; Lafarge D; Jaouen L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026609. PubMed ID: 15447612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence.
    Fellah ZE; Berger S; Lauriks W; Depollier C; Aristégui C; Chapelon JY
    J Acoust Soc Am; 2003 May; 113(5):2424-33. PubMed ID: 12765361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustical modeling and Bayesian inference for rigid porous media in the low-mid frequency regime.
    Roncen R; Fellah ZEA; Lafarge D; Piot E; Simon F; Ogam E; Fellah M; Depollier C
    J Acoust Soc Am; 2018 Dec; 144(6):3084. PubMed ID: 30599665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse identification of a higher order viscous parameter of rigid porous media in the high frequency domain.
    Roncen R; Fellah ZEA; Piot E; Simon F; Ogam E; Fellah M; Depollier C
    J Acoust Soc Am; 2019 Mar; 145(3):1629. PubMed ID: 31067960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient acoustic wave propagation in rigid porous media: a time-domain approach.
    Fellah ZE; Depollier C
    J Acoust Soc Am; 2000 Feb; 107(2):683-8. PubMed ID: 10687676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Higher Order Viscous and Thermal Effects on an Ultrasonic Wave Reflected from the First Interface of a Porous Material.
    Fellah ZEA; Roncen R; Ongwen NO; Ogam E; Fellah M; Depollier C
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves.
    Fellah ZE; Depollier C; Berger S; Lauriks W; Trompette P; Chapelon JY
    J Acoust Soc Am; 2003 Nov; 114(5):2561-9. PubMed ID: 14649992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission.
    Haïat G; Naili S; Grimal Q; Talmant M; Desceliers C; Soize C
    J Acoust Soc Am; 2009 Jun; 125(6):4043-52. PubMed ID: 19507985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.
    Groby JP; Dazel O; Depollier C; Ogam E; Kelders L
    J Acoust Soc Am; 2012 Jul; 132(1):477-86. PubMed ID: 22779494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic wave propagation in equivalent fluid macroscopically inhomogeneous materials.
    Cieszko M; Drelich R; Pakula M
    J Acoust Soc Am; 2012 Nov; 132(5):2970-7. PubMed ID: 23145584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An equivalent fluid model based finite-difference time-domain algorithm for sound propagation in porous material with rigid frame.
    Zhao J; Bao M; Wang X; Lee H; Sakamoto S
    J Acoust Soc Am; 2018 Jan; 143(1):130. PubMed ID: 29390758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring flow resistivity of porous materials at low frequencies range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Sebaa N; Lauriks W; Depollier C
    J Acoust Soc Am; 2006 Apr; 119(4):1926-8. PubMed ID: 16642801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.