These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25669277)

  • 1. Transfer matrix method applied to the parallel assembly of sound absorbing materials.
    Verdière K; Panneton R; Elkoun S; Dupont T; Leclaire P
    J Acoust Soc Am; 2013 Dec; 134(6):4648. PubMed ID: 25669277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions.
    Doutres O; Atalla N; Osman H
    J Acoust Soc Am; 2015 Jun; 137(6):3502-13. PubMed ID: 26093437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for controlling boundary condition effects on the measurement of acoustic properties of small samples in tubes.
    Dupont T; Verdière K; Leclaire P; Panneton R
    Rev Sci Instrum; 2021 Apr; 92(4):044906. PubMed ID: 34243366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic field.
    Robin O; Berry A; Doutres O; Atalla N
    J Acoust Soc Am; 2014 Jul; 136(1):EL13-9. PubMed ID: 24993232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A description of transversely isotropic sound absorbing porous materials by transfer matrices.
    Khurana P; Boeckx L; Lauriks W; Leclaire P; Dazel O; Allard JF
    J Acoust Soc Am; 2009 Feb; 125(2):915-21. PubMed ID: 19206868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional model for T-shaped acoustic resonators with sound absorption materials.
    Yu G; Cheng L; Li D
    J Acoust Soc Am; 2011 May; 129(5):3000-10. PubMed ID: 21568403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
    Dijckmans A; Vermeir G
    J Acoust Soc Am; 2013 Apr; 133(4):2157-68. PubMed ID: 23556585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal incidence sound transmission loss evaluation by upstream surface impedance measurements.
    Panneton R
    J Acoust Soc Am; 2009 Mar; 125(3):1490-7. PubMed ID: 19275307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between parallel transfer matrix method and admittance sum method.
    Verdière K; Panneton R; Elkoun S; Dupont T; Leclaire P
    J Acoust Soc Am; 2014 Aug; 136(2):EL90-5. PubMed ID: 25096152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: absorption versus transmission.
    Doutres O; Atalla N
    J Acoust Soc Am; 2010 Aug; 128(2):664-71. PubMed ID: 20707436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modal-based reduction method for sound absorbing porous materials in poro-acoustic finite element models.
    Rumpler R; Deü JF; Göransson P
    J Acoust Soc Am; 2012 Nov; 132(5):3162-79. PubMed ID: 23145601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization on microlattice materials for sound absorption by an integrated transfer matrix method.
    Cai X; Yang J; Hu G
    J Acoust Soc Am; 2015 Apr; 137(4):EL334-9. PubMed ID: 25920886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reduced-order integral formulation to account for the finite size effect of isotropic square panels using the transfer matrix method.
    Bonfiglio P; Pompoli F; Lionti R
    J Acoust Soc Am; 2016 Apr; 139(4):1773. PubMed ID: 27106325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general wave decomposition formula for the measurement of normal incidence sound transmission loss in impedance tube.
    Salissou Y; Panneton R
    J Acoust Soc Am; 2009 Apr; 125(4):2083-90. PubMed ID: 19354384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complement to standard method for measuring normal incidence sound transmission loss with three microphones.
    Salissou Y; Panneton R; Doutres O
    J Acoust Soc Am; 2012 Mar; 131(3):EL216-22. PubMed ID: 22423811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.
    Ottink M; Brunskog J; Jeong CH; Fernandez-Grande E; Trojgaard P; Tiana-Roig E
    J Acoust Soc Am; 2016 Jan; 139(1):41-52. PubMed ID: 26827003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound transmission through finite lightweight multilayered structures with thin air layers.
    Dijckmans A; Vermeir G; Lauriks W
    J Acoust Soc Am; 2010 Dec; 128(6):3513-24. PubMed ID: 21218884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian acoustic analysis of multilayer porous media.
    Fackler CJ; Xiang N; Horoshenkov KV
    J Acoust Soc Am; 2018 Dec; 144(6):3582. PubMed ID: 30599691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the modeling of the diffuse field sound transmission loss of finite thickness apertures.
    Sgard F; Nelisse H; Atalla N
    J Acoust Soc Am; 2007 Jul; 122(1):302-13. PubMed ID: 17614490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.