These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25669289)

  • 1. An experimental study on the ultrasonic wave propagation in cancellous bone: waveform changes during propagation.
    Fujita F; Mizuno K; Matsukawa M
    J Acoust Soc Am; 2013 Dec; 134(6):4775. PubMed ID: 25669289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cancellous bone microstructure on two ultrasonic wave propagations in bovine femur: an in vitro study.
    Mizuno K; Somiya H; Kubo T; Matsukawa M; Otani T; Tsujimoto T
    J Acoust Soc Am; 2010 Nov; 128(5):3181-9. PubMed ID: 21110613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.
    Nelson AM; Hoffman JJ; Anderson CC; Holland MR; Nagatani Y; Mizuno K; Matsukawa M; Miller JG
    J Acoust Soc Am; 2011 Oct; 130(4):2233-40. PubMed ID: 21973378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone.
    Nagatani Y; Tachibana RO
    J Acoust Soc Am; 2014 Mar; 135(3):1197-206. PubMed ID: 24606262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2015 Feb; 137(2):EL194-9. PubMed ID: 25698050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of two longitudinal waves in human cancellous bone: an in vitro study.
    Mizuno K; Matsukawa M; Otani T; Laugier P; Padilla F
    J Acoust Soc Am; 2009 May; 125(5):3460-6. PubMed ID: 19425685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone.
    Groopman AM; Katz JI; Holland MR; Fujita F; Matsukawa M; Mizuno K; Wear KA; Miller JG
    J Acoust Soc Am; 2015 Aug; 138(2):594-604. PubMed ID: 26328678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro estimation of fast and slow wave parameters of thin trabecular bone using space-alternating generalized expectation-maximization algorithm.
    Grimes M; Bouhadjera A; Haddad S; Benkedidah T
    Ultrasonics; 2012 Jul; 52(5):614-21. PubMed ID: 22284937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of acoustic feedback to target detection in a waveguide: experimental demonstration at the ultrasonic scale.
    Roux P; Marandet C; La Rizza P; Kuperman WA
    J Acoust Soc Am; 2011 Jul; 130(1):13-9. PubMed ID: 21786873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations of linear and nonlinear ultrasound parameters with density and microarchitectural parameters in trabecular bone.
    Lee KI
    J Acoust Soc Am; 2013 Nov; 134(5):EL381-6. PubMed ID: 24181979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistics of the envelope of ultrasonic backscatter from human trabecular bone.
    Litniewski J; Cieslik L; Wojcik J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):2224-32. PubMed ID: 21973377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and slow wave detection in bovine cancellous bone in vitro using bandlimited deconvolution and Prony's method.
    Wear K; Nagatani Y; Mizuno K; Matsukawa M
    J Acoust Soc Am; 2014 Oct; 136(4):2015-24. PubMed ID: 25324100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattering of obliquely incident shear waves from a cylindrical cavity.
    Aldrin JC; Blodgett MP; Lindgren EA; Steffes GJ; Knopp JS
    J Acoust Soc Am; 2011 Jun; 129(6):3661-75. PubMed ID: 21682391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-wave propagation imaging to evaluate the structure of cancellous bone.
    Yamashita K; Fujita F; Mizuno K; Mano I; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1160-6. PubMed ID: 22711411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study on the propagation of strongly focused nonlinear ultrasound in tissue with rib-like structures.
    Lin J; Liu X; Gong X; Ping Z; Wu J
    J Acoust Soc Am; 2013 Aug; 134(2):1702-14. PubMed ID: 23927211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode-converted diffuse ultrasonic backscatter.
    Hu P; Kube CM; Koester LW; Turner JA
    J Acoust Soc Am; 2013 Aug; 134(2):982-90. PubMed ID: 23927097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.