These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25669326)

  • 1. Formation of monodisperse hierarchical lipid particles utilizing microfluidic droplets in a nonequilibrium state.
    Mizuno M; Toyota T; Konishi M; Kageyama Y; Yamada M; Seki M
    Langmuir; 2015 Mar; 31(8):2334-41. PubMed ID: 25669326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications.
    Duarte AR; Ünal B; Mano JF; Reis RL; Jensen KF
    Langmuir; 2014 Oct; 30(41):12391-9. PubMed ID: 25263163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic fabrication of monodisperse polylactide microcapsules with tunable structures through rapid precipitation.
    Watanabe T; Kimura Y; Ono T
    Langmuir; 2013 Nov; 29(46):14082-8. PubMed ID: 24164350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere.
    Wang WH; Zhang ZL; Xie YN; Wang L; Yi S; Liu K; Liu J; Pang DW; Zhao XZ
    Langmuir; 2007 Nov; 23(23):11924-31. PubMed ID: 17918864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent.
    Sugaya S; Yamada M; Hori A; Seki M
    Biomicrofluidics; 2013; 7(5):54120. PubMed ID: 24396529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.
    Balmer JA; Mykhaylyk OO; Schmid A; Armes SP; Fairclough JP; Ryan AJ
    Langmuir; 2011 Jul; 27(13):8075-89. PubMed ID: 21661736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic approach to the formation of internally porous polymer particles by solvent extraction.
    Watanabe T; G Lopez C; Douglas JF; Ono T; Cabral JT
    Langmuir; 2014 Mar; 30(9):2470-9. PubMed ID: 24568261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A micro-reactor for preparing uniform molecularly imprinted polymer beads.
    Zourob M; Mohr S; Mayes AG; Macaskill A; Pérez-Moral N; Fielden PR; Goddard NJ
    Lab Chip; 2006 Feb; 6(2):296-301. PubMed ID: 16450041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device.
    Lan W; Li S; Xu J; Luo G
    Langmuir; 2011 Nov; 27(21):13242-7. PubMed ID: 21899338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic synthesis of atto-liter scale double emulsions toward ultrafine hollow silica spheres with hierarchical pore networks.
    Jeong WC; Choi M; Lim CH; Yang SM
    Lab Chip; 2012 Dec; 12(24):5262-71. PubMed ID: 23123671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic synthesis of monodisperse nanoporous oxide particles and control of hierarchical pore structure.
    Carroll NJ; Crowder PF; Pylypenko S; Patterson W; Ratnaweera DR; Perahia D; Atanassov P; Petsev DN
    ACS Appl Mater Interfaces; 2013 May; 5(9):3524-9. PubMed ID: 23387998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct incorporation of lipophilic nanoparticles into monodisperse perfluorocarbon nanodroplets via solvent dissolution from microfluidic-generated precursor microdroplets.
    Seo M; Matsuura N
    Langmuir; 2014 Oct; 30(42):12465-73. PubMed ID: 25188556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic fabrication of stable nanoparticle-shelled bubbles.
    Lee MH; Prasad V; Lee D
    Langmuir; 2010 Feb; 26(4):2227-30. PubMed ID: 20039657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospinning of poly(vinyl alcohol) nanofibers loaded with hexadecane nanodroplets.
    Arecchi A; Mannino S; Weiss J
    J Food Sci; 2010 Aug; 75(6):N80-8. PubMed ID: 20722944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels.
    Maenaka H; Yamada M; Yasuda M; Seki M
    Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Aug; 21(17):7629-32. PubMed ID: 16089362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.