These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25669398)

  • 1. Molecular dynamics analysis on wetting and interfacial properties of water-alcohol mixture droplets on a solid surface.
    Surblys D; Yamaguchi Y; Kuroda K; Kagawa M; Nakajima T; Fujimura H
    J Chem Phys; 2014 Jan; 140(3):034505. PubMed ID: 25669398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics analysis of multiphase interfaces based on in situ extraction of the pressure distribution of a liquid droplet on a solid surface.
    Nishida S; Surblys D; Yamaguchi Y; Kuroda K; Kagawa M; Nakajima T; Fujimura H
    J Chem Phys; 2014 Feb; 140(7):074707. PubMed ID: 24559360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of Young's equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid.
    Yamaguchi Y; Kusudo H; Surblys D; Omori T; Kikugawa G
    J Chem Phys; 2019 Jan; 150(4):044701. PubMed ID: 30709259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Liquid Young's Law on SLIPS: Liquid-Liquid Interfacial Tensions and Zisman Plots.
    McHale G; Afify N; Armstrong S; Wells GG; Ledesma-Aguilar R
    Langmuir; 2022 Aug; 38(32):10032-10042. PubMed ID: 35921631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen bonded structure, polarity, molecular motion and frequency fluctuations at liquid-vapor interface of a water-methanol mixture: an ab initio molecular dynamics study.
    Choudhuri JR; Chandra A
    J Chem Phys; 2014 Oct; 141(13):134703. PubMed ID: 25296824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics analysis of the velocity slip of a water and methanol liquid mixture.
    Nakaoka S; Yamaguchi Y; Omori T; Kagawa M; Nakajima T; Fujimura H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022402. PubMed ID: 26382411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant.
    Zhu C; Li H; Huang Y; Zeng XC; Meng S
    Phys Rev Lett; 2013 Mar; 110(12):126101. PubMed ID: 25166822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of non-reactive and reactive wetting of liquids on surfaces.
    Kumar G; Prabhu KN
    Adv Colloid Interface Sci; 2007 Jun; 133(2):61-89. PubMed ID: 17560842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting.
    McHale G; Orme BV; Wells GG; Ledesma-Aguilar R
    Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of methanol on nanoparticle self-assembly at liquid-liquid interfaces: a molecular dynamics approach.
    Luo M; Song Y; Dai LL
    J Chem Phys; 2009 Nov; 131(19):194703. PubMed ID: 19929067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of free surface of water-methanol mixtures. Analysis of the truly interfacial molecular layer in computer simulation.
    Partay LB; Jedlovszky P; Vincze A; Horvai G
    J Phys Chem B; 2008 May; 112(17):5428-38. PubMed ID: 18393551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen Bond Properties and Dynamics of Liquid-Vapor Interfaces of Aqueous Methanol Solutions.
    Paul S; Chandra A
    J Chem Theory Comput; 2005 Nov; 1(6):1221-31. PubMed ID: 26631666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.
    Zhang J; Borg MK; Sefiane K; Reese JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052403. PubMed ID: 26651708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulation of fluid-solid interfaces at nanoscale.
    Ould-Kaddour F; Levesque D
    J Chem Phys; 2011 Dec; 135(22):224705. PubMed ID: 22168717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial structure and wetting properties of water droplets on graphene under a static electric field.
    Ren H; Zhang L; Li X; Li Y; Wu W; Li H
    Phys Chem Chem Phys; 2015 Sep; 17(36):23460-7. PubMed ID: 26291298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface tensions in NaCl-water-air systems from MD simulations.
    Bahadur R; Russell LM; Alavi S
    J Phys Chem B; 2007 Oct; 111(41):11989-96. PubMed ID: 17894485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actuating Water Droplets on Graphene via Surface Wettability Gradients.
    Liu Q; Xu B
    Langmuir; 2015 Aug; 31(33):9070-5. PubMed ID: 26244449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.