These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25669407)

  • 1. Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane.
    Dubov AL; Schmieschek S; Asmolov ES; Harting J; Vinogradova OI
    J Chem Phys; 2014 Jan; 140(3):034707. PubMed ID: 25669407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drag force on a sphere moving toward an anisotropic superhydrophobic plane.
    Asmolov ES; Belyaev AV; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026330. PubMed ID: 21929113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing effective slippage on superhydrophobic stripes by atomic force microscopy.
    Nizkaya TV; Dubov AL; Mourran A; Vinogradova OI
    Soft Matter; 2016 Aug; 12(33):6910-7. PubMed ID: 27476481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow past superhydrophobic surfaces with cosine variation in local slip length.
    Asmolov ES; Schmieschek S; Harting J; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023005. PubMed ID: 23496608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensorial slip of superhydrophobic channels.
    Schmieschek S; Belyaev AV; Harting J; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016324. PubMed ID: 22400674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drag reduction on a patterned superhydrophobic surface.
    Truesdell R; Mammoli A; Vorobieff P; van Swol F; Brinker CJ
    Phys Rev Lett; 2006 Jul; 97(4):044504. PubMed ID: 16907578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volumetric method for calculating the flow around moving objects in lattice-Boltzmann schemes.
    Rohde M; Derksen JJ; Van den Akker HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056701. PubMed ID: 12059744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective hydrodynamic boundary conditions for microtextured surfaces.
    Mongruel A; Chastel T; Asmolov ES; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):011002. PubMed ID: 23410274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective slip-length tensor for a flow over weakly slipping stripes.
    Asmolov ES; Zhou J; Schmid F; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023004. PubMed ID: 24032921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slip-induced dynamics of patterned and Janus-like spheres in laminar flows.
    Willmott GR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066309. PubMed ID: 19658596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective slippage on superhydrophobic trapezoidal grooves.
    Zhou J; Asmolov ES; Schmid F; Vinogradova OI
    J Chem Phys; 2013 Nov; 139(17):174708. PubMed ID: 24206323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective slip over superhydrophobic surfaces in thin channels.
    Feuillebois F; Bazant MZ; Vinogradova OI
    Phys Rev Lett; 2009 Jan; 102(2):026001. PubMed ID: 19257293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-determined shapes and velocities of giant near-zero drag gas cavities.
    Vakarelski IU; Klaseboer E; Jetly A; Mansoor MM; Aguirre-Pablo AA; Chan DYC; Thoroddsen ST
    Sci Adv; 2017 Sep; 3(9):e1701558. PubMed ID: 28913434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translation and rotation of slightly deformed colloidal spheres experiencing slip.
    Chang YC; Keh HJ
    J Colloid Interface Sci; 2009 Feb; 330(1):201-10. PubMed ID: 19012900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic flow in striped superhydrophobic channels.
    Zhou J; Belyaev AV; Schmid F; Vinogradova OI
    J Chem Phys; 2012 May; 136(19):194706. PubMed ID: 22612108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of frictional properties of Couette flow with striped superhydrophobic surfaces under different loads.
    Hu C; Tang D; Lv J; Bai M; Zhang X
    Phys Chem Chem Phys; 2019 Aug; 21(32):17786-17791. PubMed ID: 31372621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall.
    Patlazhan S; Vagner S
    Phys Rev E; 2017 Jul; 96(1-1):013104. PubMed ID: 29347200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transverse flow in thin superhydrophobic channels.
    Feuillebois F; Bazant MZ; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):055301. PubMed ID: 21230537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of a Fluid Sphere in the Vicinity of a Flat Plane with Constant Temperature Gradient.
    Chen SH
    J Colloid Interface Sci; 2000 Oct; 230(1):157-170. PubMed ID: 10998300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.