These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25669514)

  • 1. Extending atomistic simulation timescale in solid/liquid systems: crystal growth from solution by a parallel-replica dynamics and continuum hybrid method.
    Lu CY; Voter AF; Perez D
    J Chem Phys; 2014 Jan; 140(4):044116. PubMed ID: 25669514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling.
    Li M; Han Y; Thiel PA; Evans JW
    J Phys Condens Matter; 2009 Feb; 21(8):084216. PubMed ID: 21817368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sublattice parallel replica dynamics.
    Martínez E; Uberuaga BP; Voter AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063308. PubMed ID: 25019913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic simulation model on a diffusive timescale based on the extension of the cluster-activation method to continuous space.
    Yamada R; Ohno M
    Phys Rev E; 2023 Apr; 107(4-2):045307. PubMed ID: 37198861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended temperature-accelerated dynamics: enabling long-time full-scale modeling of large rare-event systems.
    Bochenkov V; Suetin N; Shankar S
    J Chem Phys; 2014 Sep; 141(9):094105. PubMed ID: 25194362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voxel based parallel post processor for void nucleation and growth analysis of atomistic simulations of material fracture.
    Hemani H; Warrier M; Sakthivel N; Chaturvedi S
    J Mol Graph Model; 2014 May; 50():134-41. PubMed ID: 24793054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of molecular dynamics with hybrid continuum-molecular dynamics for a single tethered polymer in a solvent.
    Barsky S; Delgado-Buscalioni R; Coveney PV
    J Chem Phys; 2004 Aug; 121(5):2403-11. PubMed ID: 15260795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An atomistic simulation scheme for modeling crystal formation from solution.
    Kawska A; Brickmann J; Kniep R; Hochrein O; Zahn D
    J Chem Phys; 2006 Jan; 124(2):024513. PubMed ID: 16422617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A direct two-dimensional pressure formulation in molecular dynamics.
    Yd S; Maroo SC
    J Mol Graph Model; 2018 Jan; 79():230-234. PubMed ID: 29272759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating multiscale modelling of fluids with on-the-fly Gaussian process regression.
    Stephenson D; Kermode JR; Lockerby DA
    Microfluid Nanofluidics; 2018; 22(12):139. PubMed ID: 30930707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent triple-scale simulation of molecular liquids.
    Delgado-Buscalioni R; Kremer K; Praprotnik M
    J Chem Phys; 2008 Mar; 128(11):114110. PubMed ID: 18361557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations.
    Bylaska EJ; Weare JQ; Weare JH
    J Chem Phys; 2013 Aug; 139(7):074114. PubMed ID: 23968079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Step free energies at faceted solid-liquid interfaces from equilibrium molecular dynamics simulations.
    Frolov T; Asta M
    J Chem Phys; 2012 Dec; 137(21):214108. PubMed ID: 23231218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature activated molecular dynamics: an efficient approach for atomistic simulation of solid-state aggregation phenomena.
    Prasad M; Sinno T
    J Chem Phys; 2004 Nov; 121(18):8699-710. PubMed ID: 15527333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics study of thermal phenomena in an ultrathin liquid film sheared between solid surfaces: the influence of the crystal plane on energy and momentum transfer at solid-liquid interfaces.
    Ohara T; Torii D
    J Chem Phys; 2005 Jun; 122(21):214717. PubMed ID: 15974772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic nature of NaCl nucleation at the solid-liquid interface.
    Yang Y; Meng S
    J Chem Phys; 2007 Jan; 126(4):044708. PubMed ID: 17286500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closing the gap between experiment and theory: crystal growth by temperature accelerated dynamics.
    Montalenti F; Sørensen MR; Voter AF
    Phys Rev Lett; 2001 Sep; 87(12):126101. PubMed ID: 11580528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MDLab: a molecular dynamics simulation prototyping environment.
    Cickovski T; Chatterjee S; Wenger J; Sweet CR; Izaguirre JA
    J Comput Chem; 2010 May; 31(7):1345-56. PubMed ID: 19882726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-liquid interface free energy in binary systems: theory and atomistic calculations for the (110) Cu-Ag interface.
    Frolov T; Mishin Y
    J Chem Phys; 2009 Aug; 131(5):054702. PubMed ID: 19673580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.