These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids. Aradi B; Niklasson AM; Frauenheim T J Chem Theory Comput; 2015 Jul; 11(7):3357-63. PubMed ID: 26575769 [TBL] [Abstract][Full Text] [Related]
23. Extended Lagrangian Born-Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models. Niklasson AMN J Chem Phys; 2021 Feb; 154(5):054101. PubMed ID: 33557538 [TBL] [Abstract][Full Text] [Related]
24. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
25. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics. Marsalek O; Uhlig F; VandeVondele J; Jungwirth P Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274 [TBL] [Abstract][Full Text] [Related]
26. Constant pressure ab initio molecular dynamics with discrete variable representation basis sets. Ma Z; Tuckerman M J Chem Phys; 2010 Nov; 133(18):184110. PubMed ID: 21073216 [TBL] [Abstract][Full Text] [Related]
27. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet. Rana MK; Chandra A J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495 [TBL] [Abstract][Full Text] [Related]
28. Quantum wave packet ab initio molecular dynamics: an approach to study quantum dynamics in large systems. Iyengar SS; Jakowski J J Chem Phys; 2005 Mar; 122(11):114105. PubMed ID: 15836199 [TBL] [Abstract][Full Text] [Related]
29. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations. Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974 [TBL] [Abstract][Full Text] [Related]
30. Combining ab initio quantum mechanics with a dipole-field model to describe acid dissociation reactions in water: first-principles free energy and entropy calculations. Maurer P; Iftimie R J Chem Phys; 2010 Feb; 132(7):074112. PubMed ID: 20170220 [TBL] [Abstract][Full Text] [Related]
31. Determination of molecular vibrational state energies using the ab initio semiclassical initial value representation: application to formaldehyde. Wong SY; Benoit DM; Lewerenz M; Brown A; Roy PN J Chem Phys; 2011 Mar; 134(9):094110. PubMed ID: 21384953 [TBL] [Abstract][Full Text] [Related]
32. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525 [TBL] [Abstract][Full Text] [Related]
33. Quantum wavepacket ab initio molecular dynamics: generalizations using an extended Lagrangian treatment of diabatic states coupled through multireference electronic structure. Li X; Iyengar SS J Chem Phys; 2010 Nov; 133(18):184105. PubMed ID: 21073211 [TBL] [Abstract][Full Text] [Related]
34. Efficient, "On-the-Fly", Born-Oppenheimer and Car-Parrinello-type Dynamics with Coupled Cluster Accuracy through Fragment Based Electronic Structure. Haycraft C; Li J; Iyengar SS J Chem Theory Comput; 2017 May; 13(5):1887-1901. PubMed ID: 28362491 [TBL] [Abstract][Full Text] [Related]
35. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related]
36. Efficient and Accurate Born-Oppenheimer Molecular Dynamics for Large Molecular Systems. Peters LDM; Kussmann J; Ochsenfeld C J Chem Theory Comput; 2017 Nov; 13(11):5479-5485. PubMed ID: 29068678 [TBL] [Abstract][Full Text] [Related]
37. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections. Reimers JR; McKemmish LK; McKenzie RH; Hush NS Phys Chem Chem Phys; 2015 Oct; 17(38):24641-65. PubMed ID: 26196265 [TBL] [Abstract][Full Text] [Related]
38. Static and Dynamical Properties of Liquid Water from First Principles by a Novel Car-Parrinello-like Approach. Kühne TD; Krack M; Parrinello M J Chem Theory Comput; 2009 Feb; 5(2):235-41. PubMed ID: 26610101 [TBL] [Abstract][Full Text] [Related]
39. A Simple ab Initio Model for the Hydrated Electron That Matches Experiment. Kumar A; Walker JA; Bartels DM; Sevilla MD J Phys Chem A; 2015 Aug; 119(34):9148-59. PubMed ID: 26275103 [TBL] [Abstract][Full Text] [Related]
40. Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method. Zheng G; Niklasson AM; Karplus M J Chem Phys; 2011 Jul; 135(4):044122. PubMed ID: 21806105 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]