These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from first principles. Podeszwa R; Rice BM; Szalewicz K Phys Chem Chem Phys; 2009 Jul; 11(26):5512-8. PubMed ID: 19551222 [TBL] [Abstract][Full Text] [Related]
3. The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine (RDX) determined by Brillouin scattering. Haycraft JJ; Stevens LL; Eckhardt CJ J Chem Phys; 2006 Jan; 124(2):024712. PubMed ID: 16422631 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics study of the structures and properties of RDX/GAP propellant. Li M; Li F; Shen R; Guo X J Hazard Mater; 2011 Feb; 186(2-3):2031-6. PubMed ID: 21237558 [TBL] [Abstract][Full Text] [Related]
8. Surface effects on the crystallization of cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) and the consequences for its N K X-ray emission spectrum. Goldberg IG; Vila FD; Jach T J Phys Chem A; 2012 Oct; 116(40):9897-9. PubMed ID: 22974270 [TBL] [Abstract][Full Text] [Related]
9. Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry-adapted perturbation theory. Podeszwa R; Bukowski R; Rice BM; Szalewicz K Phys Chem Chem Phys; 2007 Nov; 9(41):5561-9. PubMed ID: 17957312 [TBL] [Abstract][Full Text] [Related]
10. Prediction of crystal morphology of cyclotrimethylene trinitramine in the solvent medium by computer simulation: a case of cyclohexanone solvent. Chen G; Xia M; Lei W; Wang F; Gong X J Phys Chem A; 2014 Dec; 118(49):11471-8. PubMed ID: 25401274 [TBL] [Abstract][Full Text] [Related]
12. High pressure-high temperature decomposition of γ-cyclotrimethylene trinitramine. Dreger ZA; McCluskey MD; Gupta YM J Phys Chem A; 2012 Oct; 116(39):9680-8. PubMed ID: 22971173 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs. Xiao JJ; Li SY; Chen J; Ji GF; Zhu W; Zhao F; Wu Q; Xiao HM J Mol Model; 2013 Feb; 19(2):803-9. PubMed ID: 23053015 [TBL] [Abstract][Full Text] [Related]
14. High pressure Raman spectroscopy of single crystals of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Dreger ZA; Gupta YM J Phys Chem B; 2007 Apr; 111(15):3893-903. PubMed ID: 17388552 [TBL] [Abstract][Full Text] [Related]
15. Decomposition of γ-cyclotrimethylene trinitramine (γ-RDX): relevance for shock wave initiation. Dreger ZA; Gupta YM J Phys Chem A; 2012 Aug; 116(34):8713-7. PubMed ID: 22873636 [TBL] [Abstract][Full Text] [Related]
17. Investigating Orientational Defects in Energetic Material RDX Using First-Principles Calculations. Pal A; Meunier V; Picu CR J Phys Chem A; 2016 Mar; 120(11):1917-24. PubMed ID: 26943238 [TBL] [Abstract][Full Text] [Related]
18. Pressure-Thresholded Response in Cylindrically Shocked Cyclotrimethylene Trinitramine (RDX). Dresselhaus-Cooper LE; Martynowych DJ; Zhang F; Tsay C; Ilavsky J; Wang SG; Chen YS; Nelson KA J Phys Chem A; 2020 Apr; 124(17):3301-3313. PubMed ID: 32009390 [TBL] [Abstract][Full Text] [Related]
19. Frictional properties of single crystals HMX, RDX and PETN explosives. Wu YQ; Huang FL J Hazard Mater; 2010 Nov; 183(1-3):324-33. PubMed ID: 20688432 [TBL] [Abstract][Full Text] [Related]
20. Free-energy calculations using classical molecular simulation: application to the determination of the melting point and chemical potential of a flexible RDX model. Sellers MS; Lísal M; Brennan JK Phys Chem Chem Phys; 2016 Mar; 18(11):7841-50. PubMed ID: 26661376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]