These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25669565)

  • 1. Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix.
    Battie Y; Resano-Garcia A; Chaoui N; Zhang Y; En Naciri A
    J Chem Phys; 2014 Jan; 140(4):044705. PubMed ID: 25669565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of optical properties of layered metallic nanoparticles embedded inside dielectric matrices: interference method or Maxwell Garnett effective-medium theory?
    Protopapa ML
    Appl Opt; 2010 Jun; 49(16):3014-24. PubMed ID: 20517370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and theoretical determination of the plasmonic responses and shape distribution of colloidal metallic nanoparticles.
    Resano-Garcia A; Battie Y; En Naciri A; Akil S; Chaoui N
    J Chem Phys; 2015 Apr; 142(13):134108. PubMed ID: 25854229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layered silver nanoparticles embedded in a BaF(2) matrix: optical characterization.
    Protopapa ML; Rizzo A; Re M; Pilloni L
    Appl Opt; 2009 Dec; 48(35):6662-9. PubMed ID: 20011006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling interband transitions in silver nanoparticle-fluoropolymer composites.
    See KC; Spicer JB; Brupbacher J; Zhang D; Vargo TG
    J Phys Chem B; 2005 Feb; 109(7):2693-8. PubMed ID: 16851276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing optofluidic actuation of micro-objects by tagging with plasmonic nanoparticles.
    Burgin J; Si S; Delville MH; Delville JP
    Opt Express; 2014 May; 22(9):10139-50. PubMed ID: 24921718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical studies on thermally surface plasmon tuned Au, Ag and Au:Ag nanocomposite polymer films.
    Karthikeyan B
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():456-60. PubMed ID: 22728236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroellipsometric characterization and modeling of plasmonic diamond-like carbon nanocomposite films with embedded Ag nanoparticles.
    Yaremchuk I; Meškinis Š; Fitio V; Bobitski Y; Šlapikas K; Čiegis A; Balevičius Z; Selskis A; Tamulevičius S
    Nanoscale Res Lett; 2015; 10():157. PubMed ID: 25977645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent surface plasmon resonance in silver silica nanocomposites.
    Thomas S; Nair SK; Jamal EM; Al-Harthi SH; Varma MR; Anantharaman MR
    Nanotechnology; 2008 Feb; 19(7):075710. PubMed ID: 21817658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix.
    Dhawan A; Muth JF
    Nanotechnology; 2006 May; 17(10):2504-11. PubMed ID: 21727496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films.
    Rai VN; Srivastava AK; Mukherjee C; Deb SK
    Appl Opt; 2012 May; 51(14):2606-15. PubMed ID: 22614480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects.
    Sancho-Parramon J
    Nanotechnology; 2009 Jun; 20(23):235706. PubMed ID: 19451675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of shaped silver nanoparticles.
    Vodnik VV; Bozanić DK; Bibić N; Saponjić ZV; Nedeljković JM
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3511-5. PubMed ID: 19051904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic effective medium properties from interacting Ag nanoparticles in silicon dioxide.
    Menegotto T; Horowitz F
    Appl Opt; 2014 May; 53(13):2853-9. PubMed ID: 24921871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X; Tamada K; Baba A; Knoll W; Hara M
    J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-difference time-domain numerical simulation study on the optical properties of silver nanocomposites.
    Kim J; Lee GJ; Park I; Lee YP
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5527-31. PubMed ID: 22966604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles.
    Malassis L; Massé P; Tréguer-Delapierre M; Mornet S; Weisbecker P; Kravets V; Grigorenko A; Barois P
    Langmuir; 2013 Feb; 29(5):1551-61. PubMed ID: 23286375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical response of Cu clusters in zeolite template.
    López-Bastidas C; Petranovskii V; Machorro R
    J Colloid Interface Sci; 2012 Jun; 375(1):60-4. PubMed ID: 22440728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.