These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 25669572)
1. Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups. Tian X; Gu J; Xu JB J Chem Phys; 2014 Jan; 140(4):044712. PubMed ID: 25669572 [TBL] [Abstract][Full Text] [Related]
2. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons. Owens JR; Cruz-Silva E; Meunier V Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134 [TBL] [Abstract][Full Text] [Related]
3. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms. Yu ZL; Wang D; Zhu Z; Zhang ZH Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414 [TBL] [Abstract][Full Text] [Related]
4. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons. Veiga RG; Miwa RH; Srivastava GP J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000 [TBL] [Abstract][Full Text] [Related]
5. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges. Sun L; Wei P; Wei J; Sanvito S; Hou S J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127 [TBL] [Abstract][Full Text] [Related]
6. Effect of layer stacking on the electronic structure of graphene nanoribbons. Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785 [TBL] [Abstract][Full Text] [Related]
7. A guide to the design of electronic properties of graphene nanoribbons. Yazyev OV Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074 [TBL] [Abstract][Full Text] [Related]
8. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
9. Energy gaps in graphene nanoribbons. Son YW; Cohen ML; Louie SG Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765 [TBL] [Abstract][Full Text] [Related]
10. Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary. Dai QQ; Zhu YF; Jiang Q Phys Chem Chem Phys; 2014 Jun; 16(22):10607-13. PubMed ID: 24752487 [TBL] [Abstract][Full Text] [Related]
11. Electronic structure of BSb defective monolayers and nanoribbons. Ersan F; Gökoğlu G; Aktürk E J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113 [TBL] [Abstract][Full Text] [Related]
12. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Magda GZ; Jin X; Hagymási I; Vancsó P; Osváth Z; Nemes-Incze P; Hwang C; Biró LP; Tapasztó L Nature; 2014 Oct; 514(7524):608-11. PubMed ID: 25355361 [TBL] [Abstract][Full Text] [Related]
13. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141 [TBL] [Abstract][Full Text] [Related]
14. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons. Owens FJ J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880 [TBL] [Abstract][Full Text] [Related]
15. Stacking stability, emergence of magnetization and electromechanical nanosensing in bilayer graphene nanoribbons. Paulla KK; Farajian AA J Phys Condens Matter; 2013 Mar; 25(11):115303. PubMed ID: 23406963 [TBL] [Abstract][Full Text] [Related]
16. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube. Kou L; Tang C; Wehling T; Frauenheim T; Chen C Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363 [TBL] [Abstract][Full Text] [Related]
17. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies. Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375 [TBL] [Abstract][Full Text] [Related]
18. Electronic structure and magnetic properties of penta-graphene nanoribbons. Yuan PF; Zhang ZH; Fan ZQ; Qiu M Phys Chem Chem Phys; 2017 Apr; 19(14):9528-9536. PubMed ID: 28345700 [TBL] [Abstract][Full Text] [Related]
19. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078 [TBL] [Abstract][Full Text] [Related]
20. Self-assembled metal atom chains on graphene nanoribbons. Choi SM; Jhi SH Phys Rev Lett; 2008 Dec; 101(26):266105. PubMed ID: 19437653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]