These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism. Tognalli NG; Cortés E; Hernández-Nieves AD; Carro P; Usaj G; Balseiro CA; Vela ME; Salvarezza RC; Fainstein A ACS Nano; 2011 Jul; 5(7):5433-43. PubMed ID: 21675769 [TBL] [Abstract][Full Text] [Related]
3. Waveguide-coupled directional Raman radiation for surface analysis. Chen C; Li JY; Wang L; Lu DF; Qi ZM Phys Chem Chem Phys; 2015 Sep; 17(33):21278-87. PubMed ID: 25662793 [TBL] [Abstract][Full Text] [Related]
4. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. Payton JL; Morton SM; Moore JE; Jensen L Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411 [TBL] [Abstract][Full Text] [Related]
5. Surface-enhanced Raman spectroscopy. Stiles PL; Dieringer JA; Shah NC; Van Duyne RP Annu Rev Anal Chem (Palo Alto Calif); 2008; 1():601-26. PubMed ID: 20636091 [TBL] [Abstract][Full Text] [Related]
6. Surface-enhanced Raman scattering on silvered porous alumina templates: role of multipolar surface plasmon resonant modes. Terekhov SN; Kachan SM; Panarin AY; Mojzes P Phys Chem Chem Phys; 2015 Dec; 17(47):31780-9. PubMed ID: 26563558 [TBL] [Abstract][Full Text] [Related]
7. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related]
8. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Brus L Acc Chem Res; 2008 Dec; 41(12):1742-9. PubMed ID: 18783255 [TBL] [Abstract][Full Text] [Related]
9. Power-law analysis of surface-plasmon-enhanced electromagnetic field dependence of blinking SERS of thiacyanine or thiacarbocyanine adsorbed on single silver nanoaggregates. Kitahama Y; Tanaka Y; Itoh T; Ozaki Y Phys Chem Chem Phys; 2011 Apr; 13(16):7439-48. PubMed ID: 21412542 [TBL] [Abstract][Full Text] [Related]
10. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K; Choi JY; Lee HB; Shin KS J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550 [TBL] [Abstract][Full Text] [Related]
11. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance. Šubr M; Kuzminova A; Kylián O; Procházka M Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():202-207. PubMed ID: 29398590 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of N-Ag bonding determined tunability of surface-enhanced Raman scattering of pyridine on MAg (M = Cu, Ag, Au) diatomic clusters. Chen L; Gao Y; Xu H; Wang Z; Li Z; Zhang RQ Phys Chem Chem Phys; 2014 Oct; 16(38):20665-71. PubMed ID: 25157565 [TBL] [Abstract][Full Text] [Related]
14. The theory of surface-enhanced Raman scattering. Lombardi JR; Birke RL J Chem Phys; 2012 Apr; 136(14):144704. PubMed ID: 22502540 [TBL] [Abstract][Full Text] [Related]
15. Raman microspectroscopic study on polymerization and degradation processes of a diacetylene derivative at surface enhanced Raman scattering active substrates. 1. Reaction kinetics. Itoh K; Nishizawa T; Yamagata J; Fujii M; Osaka N; Kudryashov I J Phys Chem B; 2005 Jan; 109(1):264-70. PubMed ID: 16851012 [TBL] [Abstract][Full Text] [Related]
16. Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires. Fazio B; D'Andrea C; Bonaccorso F; Irrera A; Calogero G; Vasi C; Gucciardi PG; Allegrini M; Toma A; Chiappe D; Martella C; Buatier de Mongeot F ACS Nano; 2011 Jul; 5(7):5945-56. PubMed ID: 21688789 [TBL] [Abstract][Full Text] [Related]
17. Spatial and temporal variation of surface-enhanced Raman scattering at Ag nanowires in aqueous solution. Clayton DA; McPherson TE; Pan S; Chen M; Dixon DA; Hu D Phys Chem Chem Phys; 2013 Jan; 15(3):850-9. PubMed ID: 23202361 [TBL] [Abstract][Full Text] [Related]
18. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates. Choi S; Ahn M; Kim J Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665 [TBL] [Abstract][Full Text] [Related]
19. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection. Tan X; Melkersson J; Wu S; Wang L; Zhang J Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682 [TBL] [Abstract][Full Text] [Related]
20. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets. Sun S; Wu P Phys Chem Chem Phys; 2011 Dec; 13(47):21116-20. PubMed ID: 22020382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]