BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25669883)

  • 1. The let-7 microRNA directs vulval development through a single target.
    Ecsedi M; Rausch M; Großhans H
    Dev Cell; 2015 Feb; 32(3):335-44. PubMed ID: 25669883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROS regulation of RAS and vulva development in Caenorhabditis elegans.
    Kramer-Drauberg M; Liu JL; Desjardins D; Wang Y; Branicky R; Hekimi S
    PLoS Genet; 2020 Jun; 16(6):e1008838. PubMed ID: 32544191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans.
    Skorobogata O; Rocheleau CE
    PLoS One; 2012; 7(4):e36489. PubMed ID: 22558469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple mechanisms are involved in regulating the expression of the developmental timing regulator lin-28 in Caenorhabditis elegans.
    Morita K; Han M
    EMBO J; 2006 Dec; 25(24):5794-804. PubMed ID: 17139256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cohort of Caenorhabditis species lacking the highly conserved let-7 microRNA.
    Nelson C; Ambros V
    G3 (Bethesda); 2021 Apr; 11(3):. PubMed ID: 33890616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans.
    Abbott AL; Alvarez-Saavedra E; Miska EA; Lau NC; Bartel DP; Horvitz HR; Ambros V
    Dev Cell; 2005 Sep; 9(3):403-14. PubMed ID: 16139228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of miRNA accumulation during C. elegans larval development.
    Nahar S; Morales Moya LJ; Brunner J; Hendriks GJ; Towbin B; Hauser YP; Brancati G; Gaidatzis D; Großhans H
    Nucleic Acids Res; 2024 May; 52(9):5336-5355. PubMed ID: 38381904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans.
    Jovanovic M; Reiter L; Picotti P; Lange V; Bogan E; Hurschler BA; Blenkiron C; Lehrbach NJ; Ding XC; Weiss M; Schrimpf SP; Miska EA; Grosshans H; Aebersold R; Hengartner MO
    Nat Methods; 2010 Oct; 7(10):837-42. PubMed ID: 20835247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design.
    Farboud B; Meyer BJ
    Genetics; 2015 Apr; 199(4):959-71. PubMed ID: 25695951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetic interactome of the let-7 microRNA in C. elegans.
    Rausch M; Ecsedi M; Bartake H; Müllner A; Grosshans H
    Dev Biol; 2015 May; 401(2):276-86. PubMed ID: 25732775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicolor CRISPR labeling of chromosomal loci in human cells.
    Ma H; Naseri A; Reyes-Gutierrez P; Wolfe SA; Zhang S; Pederson T
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3002-7. PubMed ID: 25713381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-specific proteomic analysis in Caenorhabditis elegans.
    Yuet KP; Doma MK; Ngo JT; Sweredoski MJ; Graham RL; Moradian A; Hess S; Schuman EM; Sternberg PW; Tirrell DA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2705-10. PubMed ID: 25691744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput screens in mammalian cells using the CRISPR-Cas9 system.
    Peng J; Zhou Y; Zhu S; Wei W
    FEBS J; 2015 Jun; 282(11):2089-96. PubMed ID: 25731961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue expression pattern of PMK-2 p38 MAPK is established by the miR-58 family in C. elegans.
    Pagano DJ; Kingston ER; Kim DH
    PLoS Genet; 2015 Feb; 11(2):e1004997. PubMed ID: 25671546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy.
    Ousterout DG; Kabadi AM; Thakore PI; Majoros WH; Reddy TE; Gersbach CA
    Nat Commun; 2015 Feb; 6():6244. PubMed ID: 25692716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inducible in vivo genome editing with CRISPR-Cas9.
    Dow LE; Fisher J; O'Rourke KP; Muley A; Kastenhuber ER; Livshits G; Tschaharganeh DF; Socci ND; Lowe SW
    Nat Biotechnol; 2015 Apr; 33(4):390-394. PubMed ID: 25690852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.
    Matano M; Date S; Shimokawa M; Takano A; Fujii M; Ohta Y; Watanabe T; Kanai T; Sato T
    Nat Med; 2015 Mar; 21(3):256-62. PubMed ID: 25706875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of a split-Cas9 enzyme complex.
    Wright AV; Sternberg SH; Taylor DW; Staahl BT; Bardales JA; Kornfeld JE; Doudna JA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):2984-9. PubMed ID: 25713377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal transduction during C. elegans vulval development: a NeverEnding story.
    Schmid T; Hajnal A
    Curr Opin Genet Dev; 2015 Jun; 32():1-9. PubMed ID: 25677930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas9 specifies functional viral targets during CRISPR-Cas adaptation.
    Heler R; Samai P; Modell JW; Weiner C; Goldberg GW; Bikard D; Marraffini LA
    Nature; 2015 Mar; 519(7542):199-202. PubMed ID: 25707807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.