BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 25669899)

  • 1. What has the mdx mouse model of Duchenne muscular dystrophy contributed to our understanding of this disease?
    Manning J; O'Malley D
    J Muscle Res Cell Motil; 2015 Apr; 36(2):155-67. PubMed ID: 25669899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain function in Duchenne muscular dystrophy.
    Anderson JL; Head SI; Rae C; Morley JW
    Brain; 2002 Jan; 125(Pt 1):4-13. PubMed ID: 11834588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ifetroban reduces coronary artery dysfunction in a mouse model of Duchenne muscular dystrophy.
    Mitchell R; Frederick NE; Holzman ER; Agobe F; Allaway HCM; Bagher P
    Am J Physiol Heart Circ Physiol; 2021 Jul; 321(1):H52-H58. PubMed ID: 34048282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthine oxidase is hyper-active in Duchenne muscular dystrophy.
    Lindsay A; McCourt PM; Karachunski P; Lowe DA; Ervasti JM
    Free Radic Biol Med; 2018 Dec; 129():364-371. PubMed ID: 30312761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms and Consequences of Cerebellar Purkinje Cell Disinhibition in a Mouse Model of Duchenne Muscular Dystrophy.
    Wu WC; Bradley SP; Christie JM; Pugh JR
    J Neurosci; 2022 Mar; 42(10):2103-2115. PubMed ID: 35064002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive impairment appears progressive in the mdx mouse.
    Bagdatlioglu E; Porcari P; Greally E; Blamire AM; Straub VW
    Neuromuscul Disord; 2020 May; 30(5):368-388. PubMed ID: 32360405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural disease history of the D2
    van Putten M; Putker K; Overzier M; Adamzek WA; Pasteuning-Vuhman S; Plomp JJ; Aartsma-Rus A
    FASEB J; 2019 Jul; 33(7):8110-8124. PubMed ID: 30933664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What do animal models have to tell us regarding Duchenne muscular dystrophy?
    Wells DJ; Wells KE
    Acta Myol; 2005 Dec; 24(3):172-80. PubMed ID: 16629050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models.
    van der Pijl EM; van Putten M; Niks EH; Verschuuren JJ; Aartsma-Rus A; Plomp JJ
    Eur J Neurosci; 2016 Jun; 43(12):1623-35. PubMed ID: 27037492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for duchenne muscular dystrophy.
    Ahmad A; Brinson M; Hodges BL; Chamberlain JS; Amalfitano A
    Hum Mol Genet; 2000 Oct; 9(17):2507-15. PubMed ID: 11030755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The value of mammalian models for duchenne muscular dystrophy in developing therapeutic strategies.
    Banks GB; Chamberlain JS
    Curr Top Dev Biol; 2008; 84():431-53. PubMed ID: 19186250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of FLT1 ameliorates muscular dystrophy phenotype by increased vasculature in a mouse model of Duchenne muscular dystrophy.
    Verma M; Shimizu-Motohashi Y; Asakura Y; Ennen JP; Bosco J; Zhou Z; Fong GH; Josiah S; Keefe D; Asakura A
    PLoS Genet; 2019 Dec; 15(12):e1008468. PubMed ID: 31877123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced postsynaptic GABAA receptor number and enhanced gaboxadol induced change in holding currents in Purkinje cells of the dystrophin-deficient mdx mouse.
    Kueh SL; Dempster J; Head SI; Morley JW
    Neurobiol Dis; 2011 Sep; 43(3):558-64. PubMed ID: 21601636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle fibrosis in the mdx/utrn+/- mouse validates its suitability as a murine model of Duchenne muscular dystrophy.
    Gutpell KM; Hrinivich WT; Hoffman LM
    PLoS One; 2015; 10(1):e0117306. PubMed ID: 25607927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.
    Miyazaki D; Nakamura A; Fukushima K; Yoshida K; Takeda S; Ikeda S
    Hum Mol Genet; 2011 May; 20(9):1787-99. PubMed ID: 21320869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress on disease models and gene therapy of Duchenne muscular dystrophy].
    Li T; Liang P
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 May; 45(6):648-654. PubMed ID: 28247611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy.
    Terrill JR; Pinniger GJ; Graves JA; Grounds MD; Arthur PG
    J Physiol; 2016 Jun; 594(11):3095-110. PubMed ID: 26659826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-Anchoring Therapy of Biglycan for Mdx Mouse Model of Duchenne Muscular Dystrophy.
    Ito M; Ehara Y; Li J; Inada K; Ohno K
    Hum Gene Ther; 2017 May; 28(5):428-436. PubMed ID: 27485975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy.
    Chandrasekharan K; Yoon JH; Xu Y; deVries S; Camboni M; Janssen PM; Varki A; Martin PT
    Sci Transl Med; 2010 Jul; 2(42):42ra54. PubMed ID: 20668298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.