These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 25669905)
1. Neural and hemodynamic responses to optogenetic and sensory stimulation in the rat somatosensory cortex. Iordanova B; Vazquez AL; Poplawsky AJ; Fukuda M; Kim SG J Cereb Blood Flow Metab; 2015 Jun; 35(6):922-32. PubMed ID: 25669905 [TBL] [Abstract][Full Text] [Related]
2. Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI. Moon HS; Jiang H; Vo TT; Jung WB; Vazquez AL; Kim SG Cereb Cortex; 2021 Jul; 31(9):4053-4067. PubMed ID: 33895810 [TBL] [Abstract][Full Text] [Related]
3. Sensory and optogenetically driven single-vessel fMRI. Yu X; He Y; Wang M; Merkle H; Dodd SJ; Silva AC; Koretsky AP Nat Methods; 2016 Apr; 13(4):337-40. PubMed ID: 26855362 [TBL] [Abstract][Full Text] [Related]
4. Neural and hemodynamic responses elicited by forelimb- and photo-stimulation in channelrhodopsin-2 mice: insights into the hemodynamic point spread function. Vazquez AL; Fukuda M; Crowley JC; Kim SG Cereb Cortex; 2014 Nov; 24(11):2908-19. PubMed ID: 23761666 [TBL] [Abstract][Full Text] [Related]
5. Blood oxygenation level dependent signal and neuronal adaptation to optogenetic and sensory stimulation in somatosensory cortex in awake animals. Aksenov DP; Li L; Miller MJ; Wyrwicz AM Eur J Neurosci; 2016 Nov; 44(9):2722-2729. PubMed ID: 27564781 [TBL] [Abstract][Full Text] [Related]
6. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings. Schmid F; Wachsmuth L; Schwalm M; Prouvot PH; Jubal ER; Fois C; Pramanik G; Zimmer C; Faber C; Stroh A J Cereb Blood Flow Metab; 2016 Nov; 36(11):1885-1900. PubMed ID: 26661247 [TBL] [Abstract][Full Text] [Related]
7. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain. Sanganahalli BG; Herman P; Rothman DL; Blumenfeld H; Hyder F J Cereb Blood Flow Metab; 2016 Oct; 36(10):1695-1707. PubMed ID: 27562867 [TBL] [Abstract][Full Text] [Related]
8. Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex. Li N; van Zijl P; Thakor N; Pelled G J Mol Neurosci; 2014 Aug; 53(4):553-61. PubMed ID: 24443233 [TBL] [Abstract][Full Text] [Related]
9. Early fMRI responses to somatosensory and optogenetic stimulation reflect neural information flow. Jung WB; Im GH; Jiang H; Kim SG Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836602 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers. Hoffmeyer HW; Enager P; Thomsen KJ; Lauritzen MJ J Cereb Blood Flow Metab; 2007 Mar; 27(3):575-87. PubMed ID: 16896350 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory Neuron Activity Contributions to Hemodynamic Responses and Metabolic Load Examined Using an Inhibitory Optogenetic Mouse Model. Vazquez AL; Fukuda M; Kim SG Cereb Cortex; 2018 Nov; 28(11):4105-4119. PubMed ID: 30215693 [TBL] [Abstract][Full Text] [Related]
12. Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Martin C; Martindale J; Berwick J; Mayhew J Neuroimage; 2006 Aug; 32(1):33-48. PubMed ID: 16725349 [TBL] [Abstract][Full Text] [Related]
13. The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Jones M; Berwick J; Hewson-Stoate N; Gias C; Mayhew J Neuroimage; 2005 Sep; 27(3):609-23. PubMed ID: 15978844 [TBL] [Abstract][Full Text] [Related]
14. BOLD response during uncoupling of neuronal activity and CBF. Burke M; Bührle Ch Neuroimage; 2006 Aug; 32(1):1-8. PubMed ID: 16677832 [TBL] [Abstract][Full Text] [Related]
15. Effects of the α₂-adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex. Fukuda M; Vazquez AL; Zong X; Kim SG Eur J Neurosci; 2013 Jan; 37(1):80-95. PubMed ID: 23106361 [TBL] [Abstract][Full Text] [Related]
17. Negative blood oxygen level dependence in the rat: a model for investigating the role of suppression in neurovascular coupling. Boorman L; Kennerley AJ; Johnston D; Jones M; Zheng Y; Redgrave P; Berwick J J Neurosci; 2010 Mar; 30(12):4285-94. PubMed ID: 20335464 [TBL] [Abstract][Full Text] [Related]
18. Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals. Cardenas DP; Muir ER; Huang S; Boley A; Lodge D; Duong TQ Neuroimage; 2015 Oct; 119():382-9. PubMed ID: 26143203 [TBL] [Abstract][Full Text] [Related]
19. Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression. Böhm M; Chung DY; Gómez CA; Qin T; Takizawa T; Sadeghian H; Sugimoto K; Sakadžić S; Yaseen MA; Ayata C J Cereb Blood Flow Metab; 2020 Apr; 40(4):808-822. PubMed ID: 31063009 [TBL] [Abstract][Full Text] [Related]
20. Functional signal- and paradigm-dependent linear relationships between synaptic activity and hemodynamic responses in rat somatosensory cortex. Nemoto M; Sheth S; Guiou M; Pouratian N; Chen JW; Toga AW J Neurosci; 2004 Apr; 24(15):3850-61. PubMed ID: 15084666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]