These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 25670071)
1. Time-resolved photo and radio-luminescence studies demonstrate the possibility of using InGaN/GaN quantum wells as fast scintillators. Balakrishnan G Nanotechnology; 2015 Mar; 26(9):090501. PubMed ID: 25670071 [TBL] [Abstract][Full Text] [Related]
2. InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study. Hospodková A; Nikl M; Pacherová O; Oswald J; Brůža P; Pánek D; Foltynski B; Hulicius E; Beitlerová A; Heuken M Nanotechnology; 2014 Nov; 25(45):455501. PubMed ID: 25327948 [TBL] [Abstract][Full Text] [Related]
3. Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection. Huang FW; Sheu JK; Lee ML; Tu SJ; Lai WC; Tsai WC; Chang WH Opt Express; 2011 Nov; 19 Suppl 6():A1211-8. PubMed ID: 22109617 [TBL] [Abstract][Full Text] [Related]
4. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells. Bergbauer W; Strassburg M; Kölper Ch; Linder N; Roder C; Lähnemann J; Trampert A; Fündling S; Li SF; Wehmann HH; Waag A Nanotechnology; 2010 Jul; 21(30):305201. PubMed ID: 20603534 [TBL] [Abstract][Full Text] [Related]
5. Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-beam epitaxy. Armitage R; Tsubaki K Nanotechnology; 2010 May; 21(19):195202. PubMed ID: 20400823 [TBL] [Abstract][Full Text] [Related]
6. Investigation of Photovoltaic Properties of Single Core-Shell GaN/InGaN Wires. Messanvi A; Zhang H; Neplokh V; Julien FH; Bayle F; Foldyna M; Bougerol C; Gautier E; Babichev A; Durand C; Eymery J; Tchernycheva M ACS Appl Mater Interfaces; 2015 Oct; 7(39):21898-906. PubMed ID: 26378593 [TBL] [Abstract][Full Text] [Related]
7. Nanoscale Characterization of Carrier Dynamic and Surface Passivation in InGaN/GaN Multiple Quantum Wells on GaN Nanorods. Chen W; Wen X; Latzel M; Heilmann M; Yang J; Dai X; Huang S; Shrestha S; Patterson R; Christiansen S; Conibeer G ACS Appl Mater Interfaces; 2016 Nov; 8(46):31887-31893. PubMed ID: 27797477 [TBL] [Abstract][Full Text] [Related]
8. Indium Incorporation into InGaN Quantum Wells Grown on GaN Narrow Stripes. Sarzyński M; Grzanka E; Grzanka S; Targowski G; Czernecki R; Reszka A; Holy V; Nitta S; Liu Z; Amano H; Leszczyński M Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31416124 [TBL] [Abstract][Full Text] [Related]
9. Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique. Song H; Kim JS; Kim EK; Seo YG; Hwang SM Nanotechnology; 2010 Apr; 21(13):134026. PubMed ID: 20208099 [TBL] [Abstract][Full Text] [Related]
10. Effect of carrier transfer process between two kinds of localized potential traps on the spectral properties of InGaN/GaN multiple quantum wells. Liu W; Zhao D; Jiang D; Shi D; Zhu J; Liu Z; Chen P; Yang J; Liang F; Liu S; Xing Y; Zhang L; Wang W; Li M; Zhang Y; Du G Opt Express; 2018 Feb; 26(3):3427-3434. PubMed ID: 29401870 [TBL] [Abstract][Full Text] [Related]
12. Opposite carrier dynamics and optical absorption characteristics under external electric field in nonpolar vs. polar InGaN/GaN based quantum heterostructures. Sari E; Nizamoglu S; Choi JH; Lee SJ; Baik KH; Lee IH; Baek JH; Hwang SM; Demir HV Opt Express; 2011 Mar; 19(6):5442-50. PubMed ID: 21445183 [TBL] [Abstract][Full Text] [Related]
13. White emission by self-regulated growth of InGaN/GaN quantum wells on in situ self-organized faceted n-GaN islands. Fang Z Nanotechnology; 2011 Aug; 22(31):315706. PubMed ID: 21730755 [TBL] [Abstract][Full Text] [Related]
14. Enhanced radiative recombination and suppressed Auger process in semipolar and nonpolar InGaN/GaN quantum wells grown over GaN nanowires. You G; Liu J; Jiang Z; Wang L; El-Masry NA; Hosalli AM; Bedair SM; Xu J Opt Lett; 2014 Mar; 39(6):1501-4. PubMed ID: 24690823 [TBL] [Abstract][Full Text] [Related]
15. Effects of reduced exciton diffusion in InGaN/GaN multiple quantum well nanorods. Jiang B; Zhang C; Wang X; Xue F; Park MJ; Kwak JS; Xiao M Opt Express; 2012 Jun; 20(12):13478-87. PubMed ID: 22714375 [TBL] [Abstract][Full Text] [Related]
16. The enhanced photo absorption and carrier transportation of InGaN/GaN Quantum Wells for photodiode detector applications. Yang H; Ma Z; Jiang Y; Wu H; Zuo P; Zhao B; Jia H; Chen H Sci Rep; 2017 Feb; 7():43357. PubMed ID: 28240254 [TBL] [Abstract][Full Text] [Related]
17. Toward highly radiative white light emitting nanostructures: a new approach to dislocation-eliminated GaN/InGaN core-shell nanostructures with a negligible polarization field. Kim JH; Ko YH; Cho JH; Gong SH; Ko SM; Cho YH Nanoscale; 2014 Nov; 6(23):14213-20. PubMed ID: 25225912 [TBL] [Abstract][Full Text] [Related]
18. Local structure of uncapped and capped InGaN/GaN quantum dots. Piskorska-Hommel E; Schmidt T; Siebert M; Yamaguchi T; Hommel D; Falta J; Cross JO J Synchrotron Radiat; 2009 Jul; 16(Pt 4):494-7. PubMed ID: 19535863 [TBL] [Abstract][Full Text] [Related]
19. Optoelectrical characteristics of green light-emitting diodes containing thick InGaN wells with digitally grown InN/GaN. Yu CT; Lai WC; Yen CH; Hsu HC; Chang SJ Opt Express; 2014 May; 22 Suppl 3():A633-41. PubMed ID: 24922371 [TBL] [Abstract][Full Text] [Related]
20. Composition fluctuation of in and well-width fluctuation in InGaN/GaN multiple quantum wells in light-emitting diode devices. Gu GH; Jang DH; Nam KB; Park CG Microsc Microanal; 2013 Aug; 19 Suppl 5():99-104. PubMed ID: 23920184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]