These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25670085)
1. Minimising hydrogen sulphide generation during steam assisted production of heavy oil. Montgomery W; Sephton MA; Watson JS; Zeng H; Rees AC Sci Rep; 2015 Feb; 5():8159. PubMed ID: 25670085 [TBL] [Abstract][Full Text] [Related]
2. Challenges and future of chemical assisted heavy oil recovery processes. Ahmadi M; Chen Z Adv Colloid Interface Sci; 2020 Jan; 275():102081. PubMed ID: 31830684 [TBL] [Abstract][Full Text] [Related]
3. A Materials Science Perspective of Midstream Challenges in the Utilization of Heavy Crude Oil. Douglas LD; Rivera-Gonzalez N; Cool N; Bajpayee A; Udayakantha M; Liu GW; Anita ; Banerjee S ACS Omega; 2022 Jan; 7(2):1547-1574. PubMed ID: 35071852 [TBL] [Abstract][Full Text] [Related]
4. Generation of hydrogen sulfide during the thermal enhanced oil recovery process under superheated steam conditions. Ma Q; Yang Z; Zhang L; Lin R; Wang X RSC Adv; 2019 Oct; 9(58):33990-33996. PubMed ID: 35528881 [TBL] [Abstract][Full Text] [Related]
5. NMR relaxometry and diffusometry in characterizing structural, interfacial and colloidal properties of heavy oils and oil sands. Jones M; Taylor SE Adv Colloid Interface Sci; 2015 Oct; 224():33-45. PubMed ID: 26253810 [TBL] [Abstract][Full Text] [Related]
6. Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage. de Haas TW; Fadaei H; Guerrero U; Sinton D Lab Chip; 2013 Oct; 13(19):3832-9. PubMed ID: 23835782 [TBL] [Abstract][Full Text] [Related]
7. Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production. Chen T; Wu C; Liu R Bioresour Technol; 2011 Oct; 102(19):9236-40. PubMed ID: 21820897 [TBL] [Abstract][Full Text] [Related]
8. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications. Bergerson JA; Kofoworola O; Charpentier AD; Sleep S; Maclean HL Environ Sci Technol; 2012 Jul; 46(14):7865-74. PubMed ID: 22667690 [TBL] [Abstract][Full Text] [Related]
9. Theoretical Insights into the Catalytic Effect of Transition-Metal Ions on the Aquathermal Degradation of Sulfur-Containing Heavy Oil: A DFT Study of Cyclohexyl Phenyl Sulfide Cleavage. Tverdov I; Khafizov NR; Madzhidov TI; Varfolomeev MA; Yuan C; Kadkin ON ACS Omega; 2020 Aug; 5(31):19589-19597. PubMed ID: 32803053 [TBL] [Abstract][Full Text] [Related]
10. Industrial applications of new sulphur biotechnology. Janssen AJ; Ruitenberg R; Buisman CJ Water Sci Technol; 2001; 44(8):85-90. PubMed ID: 11730141 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous biodesulphurization and denitrification using an oil reservoir microbial culture: Effects of sulphide loading rate and sulphide to nitrate loading ratio. An S; Tang K; Nemati M Water Res; 2010 Mar; 44(5):1531-41. PubMed ID: 19913275 [TBL] [Abstract][Full Text] [Related]
12. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Jones DM; Head IM; Gray ND; Adams JJ; Rowan AK; Aitken CM; Bennett B; Huang H; Brown A; Bowler BF; Oldenburg T; Erdmann M; Larter SR Nature; 2008 Jan; 451(7175):176-80. PubMed ID: 18075503 [TBL] [Abstract][Full Text] [Related]
13. Sulphur retention and in-situ preparation of metal sulphide catalysts during activation of petroleum coke. Xiao Y; Montes V; Hill JM Chemosphere; 2022 Dec; 308(Pt 2):136340. PubMed ID: 36087736 [TBL] [Abstract][Full Text] [Related]
14. Land use greenhouse gas emissions from conventional oil production and oil sands. Yeh S; Jordaan SM; Brandt AR; Turetsky MR; Spatari S; Keith DW Environ Sci Technol; 2010 Nov; 44(22):8766-72. PubMed ID: 20949948 [TBL] [Abstract][Full Text] [Related]
15. Experimental investigation of sulphur isotope partitioning during outgassing of hydrogen sulphide from diluted aqueous solutions and seawater. Baune C; Bottcher ME Isotopes Environ Health Stud; 2010 Dec; 46(4):444-53. PubMed ID: 21154004 [TBL] [Abstract][Full Text] [Related]
16. A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation. Périno-Issartier S; Ginies C; Cravotto G; Chemat F J Chromatogr A; 2013 Aug; 1305():41-7. PubMed ID: 23890545 [TBL] [Abstract][Full Text] [Related]
17. Effects of dietary sulphur sources on concentrations of hydrogen sulphide in the rumen head-space gas of dairy cows. Dewhurst RJ; Kim EJ; Evans RT; Cabrita AR; Fonseca AJ Animal; 2007 May; 1(4):531-5. PubMed ID: 22444410 [TBL] [Abstract][Full Text] [Related]
18. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria. Osuji LC; Onojake CM J Environ Manage; 2006 Apr; 79(2):133-9. PubMed ID: 16171935 [TBL] [Abstract][Full Text] [Related]
19. A high-temperature plugging system for offshore heavy oil thermal recovery. Liu Y; Li Z; Pan M PLoS One; 2018; 13(6):e0199709. PubMed ID: 29933409 [TBL] [Abstract][Full Text] [Related]
20. Mesocosm study on weathering characteristics of Iranian Heavy crude oil with and without dispersants. Joo C; Shim WJ; Kim GB; Ha SY; Kim M; An JG; Kim E; Kim B; Jung SW; Kim YO; Yim UH J Hazard Mater; 2013 Mar; 248-249():37-46. PubMed ID: 23353930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]