These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25670157)

  • 1. Material effects on V-nanoantenna performance.
    Earl SK; Gómez DE; James TD; Davis TJ; Roberts A
    Nanoscale; 2015 Mar; 7(9):4179-86. PubMed ID: 25670157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxide mediated spectral shifting in aluminum resonant optical antennas.
    Schwab PM; Moosmann C; Dopf K; Eisler HJ
    Opt Express; 2015 Oct; 23(20):26533-43. PubMed ID: 26480166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminum for plasmonics.
    Knight MW; King NS; Liu L; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2014 Jan; 8(1):834-40. PubMed ID: 24274662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays.
    Simpkins BS; Long JP; Glembocki OJ; Guo J; Caldwell JD; Owrutsky JC
    Opt Express; 2012 Dec; 20(25):27725-39. PubMed ID: 23262719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.
    Lumdee C; Toroghi S; Kik PG
    ACS Nano; 2012 Jul; 6(7):6301-7. PubMed ID: 22731808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas.
    Martin J; Kociak M; Mahfoud Z; Proust J; Gérard D; Plain J
    Nano Lett; 2014 Oct; 14(10):5517-23. PubMed ID: 25207386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.
    Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS
    ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss aluminum epitaxial film for scalable and sustainable plasmonics: direct comparison with silver epitaxial film.
    Raja SS; Cheng CW; Gwo S
    Nanoscale; 2020 Dec; 12(46):23809-23816. PubMed ID: 33237103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing.
    King NS; Liu L; Yang X; Cerjan B; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2015 Nov; 9(11):10628-36. PubMed ID: 26426492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically Controlled Scattering in a Hybrid Dielectric-Plasmonic Nanoantenna.
    Yan J; Ma C; Liu P; Wang C; Yang G
    Nano Lett; 2017 Aug; 17(8):4793-4800. PubMed ID: 28686459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials.
    Riley CT; Smalley JS; Post KW; Basov DN; Fainman Y; Wang D; Liu Z; Sirbuly DJ
    Small; 2016 Feb; 12(7):892-901. PubMed ID: 26715115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts.
    Qiu J; Zeng G; Pavaskar P; Li Z; Cronin SB
    Phys Chem Chem Phys; 2014 Feb; 16(7):3115-21. PubMed ID: 24401904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-high sensitivity sensing based on ultraviolet plasmonic enhancements in semiconductor triangular prism meta-antenna systems.
    He Z; Li Z; Li C; Xue W; Cui W
    Opt Express; 2020 Jun; 28(12):17595-17610. PubMed ID: 32679965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoantenna Structure with Mid-Infrared Plasmonic Niobium-Doped Titanium Oxide.
    Ngo HD; Chen K; Handegård ØS; Doan AT; Ngo TD; Dao TD; Ikeda N; Ohi A; Nabatame T; Nagao T
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31878232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films.
    Chen Q; Cumming DR
    Opt Express; 2010 Jun; 18(13):14056-62. PubMed ID: 20588537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optomechanics of Single Aluminum Nanodisks.
    Su MN; Dongare PD; Chakraborty D; Zhang Y; Yi C; Wen F; Chang WS; Nordlander P; Sader JE; Halas NJ; Link S
    Nano Lett; 2017 Apr; 17(4):2575-2583. PubMed ID: 28301725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant localized electromagnetic field of highly doped silicon plasmonic nanoantennas.
    Alsayed AE; Ghanim AM; Yahia A; Swillam MA
    Sci Rep; 2023 Apr; 13(1):5793. PubMed ID: 37031268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach.
    Butet J; Martin OJ
    Nanoscale; 2014 Dec; 6(24):15262-70. PubMed ID: 25381752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic dipole radiation tailored by substrates: numerical investigation.
    Markovich DL; Ginzburg P; Samusev AK; Belov PA; Zayats AV
    Opt Express; 2014 May; 22(9):10693-702. PubMed ID: 24921770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.