These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25670340)

  • 1. Phytochrome signaling: time to tighten up the loose ends.
    Wang H; Wang H
    Mol Plant; 2015 Apr; 8(4):540-51. PubMed ID: 25670340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis.
    Jia KP; Luo Q; He SB; Lu XD; Yang HQ
    Mol Plant; 2014 Mar; 7(3):528-40. PubMed ID: 24126495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic linkages between circadian clock-associated components and phytochrome-dependent red light signal transduction in Arabidopsis thaliana.
    Ito S; Nakamichi N; Nakamura Y; Niwa Y; Kato T; Murakami M; Kita M; Mizoguchi T; Niinuma K; Yamashino T; Mizuno T
    Plant Cell Physiol; 2007 Jul; 48(7):971-83. PubMed ID: 17519251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock.
    Allen T; Koustenis A; Theodorou G; Somers DE; Kay SA; Whitelam GC; Devlin PF
    Plant Cell; 2006 Oct; 18(10):2506-16. PubMed ID: 17012604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPA1, a component of phytochrome A signal transduction, regulates the light signaling current.
    Baumgardt RL; Oliverio KA; Casal JJ; Hoecker U
    Planta; 2002 Sep; 215(5):745-53. PubMed ID: 12244439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Photomorphogenic Development by Plant Phytochromes.
    Tripathi S; Hoang QTN; Han YJ; Kim JI
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling.
    Ronald J; Davis SJ
    Plant Cell Environ; 2019 Oct; 42(10):2871-2884. PubMed ID: 31369151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling.
    Park E; Kim J; Lee Y; Shin J; Oh E; Chung WI; Liu JR; Choi G
    Plant Cell Physiol; 2004 Aug; 45(8):968-75. PubMed ID: 15356322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochrome phosphorylation in plant light signaling.
    Kim JI; Park JE; Zarate X; Song PS
    Photochem Photobiol Sci; 2005 Sep; 4(9):681-7. PubMed ID: 16121277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-regulated nucleo-cytoplasmic partitioning of phytochromes.
    Kevei E; Schafer E; Nagy F
    J Exp Bot; 2007; 58(12):3113-24. PubMed ID: 17905733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes.
    Nagano S
    J Plant Res; 2016 Mar; 129(2):123-35. PubMed ID: 26818948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants.
    Nagy F; Schäfer E
    Annu Rev Plant Biol; 2002; 53():329-55. PubMed ID: 12221979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring Phytochrome-Dependent Light Input to the Plant Circadian Clock.
    Oakenfull RJ; Ronald J; Davis SJ
    Methods Mol Biol; 2019; 2026():179-192. PubMed ID: 31317413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochrome Signaling Networks.
    Cheng MC; Kathare PK; Paik I; Huq E
    Annu Rev Plant Biol; 2021 Jun; 72():217-244. PubMed ID: 33756095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PHYTOCHROME-INTERACTING FACTORS PIF4 and PIF5 are implicated in the regulation of hypocotyl elongation in response to blue light in Arabidopsis thaliana.
    Kunihiro A; Yamashino T; Mizuno T
    Biosci Biotechnol Biochem; 2010; 74(12):2538-41. PubMed ID: 21150090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.
    Kunihiro A; Yamashino T; Nakamichi N; Niwa Y; Nakanishi H; Mizuno T
    Plant Cell Physiol; 2011 Aug; 52(8):1315-29. PubMed ID: 21666227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light signal transduction mediated by phytochromes: preliminary studies and possible approaches.
    Song PS; Sommer D; Wells TA; Hahn TR; Park HJ; Bhoo SH
    Indian J Biochem Biophys; 1996 Feb; 33(1):1-19. PubMed ID: 8744828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back.
    Montgomery BL
    Front Plant Sci; 2016; 7():480. PubMed ID: 27148307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer.
    Ryu JS; Kim JI; Kunkel T; Kim BC; Cho DS; Hong SH; Kim SH; Fernández AP; Kim Y; Alonso JM; Ecker JR; Nagy F; Lim PO; Song PS; Schäfer E; Nam HG
    Cell; 2005 Feb; 120(3):395-406. PubMed ID: 15707897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.