These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Lefort N; Glancy B; Bowen B; Willis WT; Bailowitz Z; De Filippis EA; Brophy C; Meyer C; Højlund K; Yi Z; Mandarino LJ Diabetes; 2010 Oct; 59(10):2444-52. PubMed ID: 20682693 [TBL] [Abstract][Full Text] [Related]
3. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat. Warren BE; Lou PH; Lucchinetti E; Zhang L; Clanachan AS; Affolter A; Hersberger M; Zaugg M; Lemieux H Am J Physiol Endocrinol Metab; 2014 Mar; 306(6):E658-67. PubMed ID: 24425766 [TBL] [Abstract][Full Text] [Related]
4. Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise. Fernström M; Bakkman L; Tonkonogi M; Shabalina IG; Rozhdestvenskaya Z; Mattsson CM; Enqvist JK; Ekblom B; Sahlin K J Appl Physiol (1985); 2007 May; 102(5):1844-9. PubMed ID: 17234801 [TBL] [Abstract][Full Text] [Related]
5. Flux control analysis of mitochondrial oxidative phosphorylation in rat skeletal muscle: pyruvate and palmitoyl-carnitine as substrates give different control patterns. Fritzen AJ; Grunnet N; Quistorff B Eur J Appl Physiol; 2007 Dec; 101(6):679-89. PubMed ID: 17717681 [TBL] [Abstract][Full Text] [Related]
6. The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers. Tardo-Dino PE; Touron J; Baugé S; Bourdon S; Koulmann N; Malgoyre A J Appl Physiol (1985); 2019 Aug; 127(2):312-319. PubMed ID: 31161881 [TBL] [Abstract][Full Text] [Related]
7. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress. Puente-Maestu L; Tejedor A; Lázaro A; de Miguel J; Alvarez-Sala L; González-Aragoneses F; Simón C; Agustí A Am J Respir Cell Mol Biol; 2012 Sep; 47(3):358-62. PubMed ID: 22493009 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. Tonkonogi M; Walsh B; Svensson M; Sahlin K J Physiol; 2000 Oct; 528 Pt 2(Pt 2):379-88. PubMed ID: 11034627 [TBL] [Abstract][Full Text] [Related]
10. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria. Jarmuszkiewicz W; Woyda-Ploszczyca A; Koziel A; Majerczak J; Zoladz JA Free Radic Biol Med; 2015 Jun; 83():12-20. PubMed ID: 25701433 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial energetics in liver and skeletal muscle after energy restriction in young rats. Crescenzo R; Bianco F; Falcone I; Coppola P; Dulloo AG; Liverini G; Iossa S Br J Nutr; 2012 Aug; 108(4):655-65. PubMed ID: 22085624 [TBL] [Abstract][Full Text] [Related]
12. Resveratrol improves insulin resistance of catch-up growth by increasing mitochondrial complexes and antioxidant function in skeletal muscle. Zheng J; Chen LL; Zhang HH; Hu X; Kong W; Hu D Metabolism; 2012 Jul; 61(7):954-65. PubMed ID: 22209670 [TBL] [Abstract][Full Text] [Related]
13. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake. Gill RM; O'Brien M; Young A; Gardiner D; Mailloux RJ PLoS One; 2018; 13(2):e0192801. PubMed ID: 29444156 [TBL] [Abstract][Full Text] [Related]
14. Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle. Venditti P; Masullo P; Di Meo S Arch Biochem Biophys; 1999 Dec; 372(2):315-20. PubMed ID: 10600170 [TBL] [Abstract][Full Text] [Related]
15. Cyclosporine A normalizes mitochondrial coupling, reactive oxygen species production, and inflammation and partially restores skeletal muscle maximal oxidative capacity in experimental aortic cross-clamping. Pottecher J; Guillot M; Belaidi E; Charles AL; Lejay A; Gharib A; Diemunsch P; Geny B J Vasc Surg; 2013 Apr; 57(4):1100-1108.e2. PubMed ID: 23332985 [TBL] [Abstract][Full Text] [Related]
16. Differential effects of endurance training and creatine depletion on regional mitochondrial adaptations in rat skeletal muscle. Roussel D; Lhenry F; Ecochard L; Sempore B; Rouanet JL; Favier R Biochem J; 2000 Sep; 350 Pt 2(Pt 2):547-53. PubMed ID: 10947970 [TBL] [Abstract][Full Text] [Related]
17. Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H Petrick HL; Pignanelli C; Barbeau PA; Churchward-Venne TA; Dennis KMJH; van Loon LJC; Burr JF; Goossens GH; Holloway GP J Physiol; 2019 Aug; 597(15):3985-3997. PubMed ID: 31194254 [TBL] [Abstract][Full Text] [Related]
18. Oxidative stress precedes skeletal muscle mitochondrial dysfunction during experimental aortic cross-clamping but is not associated with early lung, heart, brain, liver, or kidney mitochondrial impairment. Guillot M; Charles AL; Chamaraux-Tran TN; Bouitbir J; Meyer A; Zoll J; Schneider F; Geny B J Vasc Surg; 2014 Oct; 60(4):1043-51.e5. PubMed ID: 24095040 [TBL] [Abstract][Full Text] [Related]