BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25670991)

  • 1. Anion effect controlling the selectivity in the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide.
    Elmas S; Subhani MA; Leitner W; Müller TE
    Beilstein J Org Chem; 2015; 11():42-9. PubMed ID: 25670991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in reactivity of epoxides in the copolymerisation with carbon dioxide by zinc-based catalysts: propylene oxide versus cyclohexene oxide.
    Lehenmeier MW; Bruckmeier C; Klaus S; Dengler JE; Deglmann P; Ott AK; Rieger B
    Chemistry; 2011 Aug; 17(32):8858-69. PubMed ID: 21732442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control.
    Lu XB; Ren WM; Wu GP
    Acc Chem Res; 2012 Oct; 45(10):1721-35. PubMed ID: 22857013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polynuclear alkoxy-zinc complexes of bowl-shaped macrocycles and their use in the copolymerisation of cyclohexene oxide and CO
    Pankhurst JR; Paul S; Zhu Y; Williams CK; Love JB
    Dalton Trans; 2019 Apr; 48(15):4887-4893. PubMed ID: 30896006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced asymmetric induction for the copolymerization of CO2 and cyclohexene oxide with unsymmetric enantiopure salenCo(III) complexes: synthesis of crystalline CO2-based polycarbonate.
    Wu GP; Ren WM; Luo Y; Li B; Zhang WZ; Lu XB
    J Am Chem Soc; 2012 Mar; 134(12):5682-8. PubMed ID: 22385473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switchable Catalysis Improves the Properties of CO
    Sulley GS; Gregory GL; Chen TTD; Peña Carrodeguas L; Trott G; Santmarti A; Lee KY; Terrill NJ; Williams CK
    J Am Chem Soc; 2020 Mar; 142(9):4367-4378. PubMed ID: 32078313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterodinuclear complexes featuring Zn(ii) and M = Al(iii), Ga(iii) or In(iii) for cyclohexene oxide and CO
    Deacy AC; Durr CB; Williams CK
    Dalton Trans; 2020 Jan; 49(1):223-231. PubMed ID: 31815257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dioxide/epoxide coupling reactions utilizing Lewis base adducts of zinc halides as catalysts. Cyclic carbonate versus polycarbonate production.
    Darensbourg DJ; Lewis SJ; Rodgers JL; Yarbrough JC
    Inorg Chem; 2003 Jan; 42(2):581-9. PubMed ID: 12693242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly enantioselective catalytic system for asymmetric copolymerization of carbon dioxide and cyclohexene oxide.
    Hua YZ; Lu LJ; Huang PJ; Wei DH; Tang MS; Wang MC; Chang JB
    Chemistry; 2014 Sep; 20(39):12394-8. PubMed ID: 25112517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bimetallic iron(III) catalyst for CO2/epoxide coupling.
    Buchard A; Kember MR; Sandeman KG; Williams CK
    Chem Commun (Camb); 2011 Jan; 47(1):212-4. PubMed ID: 20871911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Lewis acid β-diiminato-zinc-complex as all-rounder for co- and terpolymerisation of various epoxides with carbon dioxide.
    Reiter M; Vagin S; Kronast A; Jandl C; Rieger B
    Chem Sci; 2017 Mar; 8(3):1876-1882. PubMed ID: 28567266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO
    Sobrino S; Navarro M; Fernández-Baeza J; Sánchez-Barba LF; Lara-Sánchez A; Garcés A; Castro-Osma JA; Rodríguez AM
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32967153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state structures of zinc(II) benzoate complexes. Catalyst precursors for the coupling of carbon dioxide and epoxides.
    Darensbourg DJ; Wildeson JR; Yarbrough JC
    Inorg Chem; 2002 Feb; 41(4):973-80. PubMed ID: 11849101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Di-Zinc-Aryl Complexes: CO
    Romain C; Garden JA; Trott G; Buchard A; White AJP; Williams CK
    Chemistry; 2017 May; 23(30):7367-7376. PubMed ID: 28370511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the formation of aliphatic polycarbonates from epoxides with chromium(III) and aluminum(III) metal-salen complexes.
    Luinstra GA; Haas GR; Molnar F; Bernhart V; Eberhardt R; Rieger B
    Chemistry; 2005 Oct; 11(21):6298-314. PubMed ID: 16106457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production.
    Darensbourg DJ; Yarbrough JC; Ortiz C; Fang CC
    J Am Chem Soc; 2003 Jun; 125(25):7586-91. PubMed ID: 12812499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Diverse Polycarbonates by Organocatalytic Copolymerization of CO
    Zhang J; Wang L; Liu S; Li Z
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202111197. PubMed ID: 34734673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO
    Deacy AC; Kilpatrick AFR; Regoutz A; Williams CK
    Nat Chem; 2020 Apr; 12(4):372-380. PubMed ID: 32221501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide.
    Stamp LM; Mang SA; Holmes AB; Knights KA; de Miguel YR; McConvey IF
    Chem Commun (Camb); 2001 Dec; (23):2502-3. PubMed ID: 12240035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Active and Readily Accessible Proline-Based Dizinc Catalyst for CO
    Schütze M; Dechert S; Meyer F
    Chemistry; 2017 Nov; 23(65):16472-16475. PubMed ID: 29024105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.