BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 25671246)

  • 1. In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment.
    Wang M; Deng Y; Zhou P; Luo Z; Li Q; Xie B; Zhang X; Chen T; Pei D; Tang Z; Wei S
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4560-72. PubMed ID: 25671246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide-Decorated Nanofibrous Niche Augments In Vitro Directed Osteogenic Conversion of Human Pluripotent Stem Cells.
    Deng Y; Yang Y; Wei S
    Biomacromolecules; 2017 Feb; 18(2):587-598. PubMed ID: 28068081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions.
    Zhou P; Wu F; Zhou T; Cai X; Zhang S; Zhang X; Li Q; Li Y; Zheng Y; Wang M; Lan F; Pan G; Pei D; Wei S
    Biomaterials; 2016 May; 87():1-17. PubMed ID: 26897536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells.
    Kang H; Shih YV; Hwang Y; Wen C; Rao V; Seo T; Varghese S
    Acta Biomater; 2014 Dec; 10(12):4961-4970. PubMed ID: 25153779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating.
    Sun Y; Deng Y; Ye Z; Liang S; Tang Z; Wei S
    Colloids Surf B Biointerfaces; 2013 Nov; 111():107-16. PubMed ID: 23792546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Conversion of Human Pluripotent Stem Cells to Osteoblasts With a Small Molecule.
    Kang H; Shih YV; Varghese S
    Curr Protoc Stem Cell Biol; 2018 Feb; 44():1F.21.1-1F.21.6. PubMed ID: 29512108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions.
    Deng Y; Zhang X; Zhao X; Li Q; Ye Z; Li Z; Liu Y; Zhou Y; Ma H; Pan G; Pei D; Fang J; Wei S
    Acta Biomater; 2013 Nov; 9(11):8840-50. PubMed ID: 23891809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation.
    Núñez-Toldrà R; Martínez-Sarrà E; Gil-Recio C; Carrasco MÁ; Al Madhoun A; Montori S; Atari M
    BMC Cell Biol; 2017 Apr; 18(1):21. PubMed ID: 28427322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions.
    Park HJ; Yang K; Kim MJ; Jang J; Lee M; Kim DW; Lee H; Cho SW
    Biomaterials; 2015 May; 50():127-39. PubMed ID: 25736503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts.
    Kang H; Shih YR; Nakasaki M; Kabra H; Varghese S
    Sci Adv; 2016 Aug; 2(8):e1600691. PubMed ID: 27602403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current applications of human pluripotent stem cells: possibilities and challenges.
    Ho PJ; Yen ML; Yet SF; Yen BL
    Cell Transplant; 2012; 21(5):801-14. PubMed ID: 22449556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D.
    Atari M; Caballé-Serrano J; Gil-Recio C; Giner-Delgado C; Martínez-Sarrà E; García-Fernández DA; Barajas M; Hernández-Alfaro F; Ferrés-Padró E; Giner-Tarrida L
    Bone; 2012 Apr; 50(4):930-41. PubMed ID: 22270057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture.
    Qu C; Puttonen KA; Lindeberg H; Ruponen M; Hovatta O; Koistinaho J; Lammi MJ
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1802-12. PubMed ID: 23735325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold.
    Garreta E; Genové E; Borrós S; Semino CE
    Tissue Eng; 2006 Aug; 12(8):2215-27. PubMed ID: 16968162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Define of Optimal Addition Period of Osteogenic Peptide to Accelerate the Osteogenic Differentiation of Human Pluripotent Stem Cells.
    Song Y; Li H; Wang Z; Shi J; Li J; Wang L; Liao L; Ma S; Zhang Y; Liu B; Yang Y; Zhou P
    Tissue Eng Regen Med; 2024 Feb; 21(2):291-308. PubMed ID: 37903982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates.
    Abraham S; Sheridan SD; Miller B; Rao RR
    Biotechnol Prog; 2010; 26(4):1126-34. PubMed ID: 20730767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions.
    Meng G; Liu S; Rancourt DE
    Stem Cells Dev; 2012 Jul; 21(11):2036-48. PubMed ID: 22149941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.
    Ireland RG; Simmons CA
    Stem Cells; 2015 Nov; 33(11):3187-96. PubMed ID: 26189759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation.
    Lu Z; Roohani-Esfahani SI; Kwok PC; Zreiqat H
    Tissue Eng Part A; 2011 Jun; 17(11-12):1651-61. PubMed ID: 21306280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of osteogenesis in dental pulp pluripotent-like stem cells by oligopeptide-modified poly(β-amino ester)s.
    Núñez-Toldrà R; Dosta P; Montori S; Ramos V; Atari M; Borrós S
    Acta Biomater; 2017 Apr; 53():152-164. PubMed ID: 28159719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.