These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25671390)
1. Reduction of nitroaromatics sorbed to black carbon by direct reaction with sorbed sulfides. Xu W; Pignatello JJ; Mitch WA Environ Sci Technol; 2015 Mar; 49(6):3419-26. PubMed ID: 25671390 [TBL] [Abstract][Full Text] [Related]
2. Black carbon-mediated destruction of nitroglycerin and RDX by hydrogen sulfide. Xu W; Dana KE; Mitch WA Environ Sci Technol; 2010 Aug; 44(16):6409-15. PubMed ID: 20704242 [TBL] [Abstract][Full Text] [Related]
3. Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation on carbon surfaces by sulfides. Xu W; Pignatello JJ; Mitch WA Environ Sci Technol; 2013 Jul; 47(13):7129-36. PubMed ID: 23725551 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms for sulfide-induced nitrobenzene reduction mediated by a variety of different carbonaceous materials: Graphitized carbon-facilitated electron transfer versus quinone-facilitated formation of reactive sulfur species. Wei C; Yin S; Zhu D J Environ Qual; 2020 Nov; 49(6):1564-1574. PubMed ID: 33111365 [TBL] [Abstract][Full Text] [Related]
5. Graphite- and soot-mediated reduction of 2,4-dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. Oh SY; Chiu PC Environ Sci Technol; 2009 Sep; 43(18):6983-8. PubMed ID: 19806731 [TBL] [Abstract][Full Text] [Related]
6. The use of carbon black to catalyze the reduction of nitrobenzenes by sulfides. Yu X; Gong W; Liu X; Shi L; Han X; Bao H J Hazard Mater; 2011 Dec; 198():340-6. PubMed ID: 22078492 [TBL] [Abstract][Full Text] [Related]
7. The role of black carbon as a catalyst for environmental redox transformation. Oh SY; Son JG; Lim OT; Chiu PC Environ Geochem Health; 2012 Jan; 34 Suppl 1():105-13. PubMed ID: 21847549 [TBL] [Abstract][Full Text] [Related]
8. Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide. Ding K; Xu W Environ Sci Technol; 2016 Dec; 50(23):12976-12983. PubMed ID: 27934256 [TBL] [Abstract][Full Text] [Related]
9. Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions. Fu H; Zhu D Environ Sci Technol; 2013 May; 47(9):4204-10. PubMed ID: 23561007 [TBL] [Abstract][Full Text] [Related]
10. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments. Gong W; Liu X; Xia S; Liang B; Zhang W J Hazard Mater; 2016 Jun; 310():125-34. PubMed ID: 26905610 [TBL] [Abstract][Full Text] [Related]
11. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Straub KL; Schink B Appl Environ Microbiol; 2004 Oct; 70(10):5744-9. PubMed ID: 15466509 [TBL] [Abstract][Full Text] [Related]
12. Surface quinone-induced formation of aqueous reactive sulfur species controls pine wood biochar-mediated reductive dechlorination of hexachloroethane by sulfide. Yin S; Wei C; Zhu D Environ Sci Process Impacts; 2020 Sep; 22(9):1898-1907. PubMed ID: 32856031 [TBL] [Abstract][Full Text] [Related]
13. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover. Liang B; Cheng H; Van Nostrand JD; Ma J; Yu H; Kong D; Liu W; Ren N; Wu L; Wang A; Lee DJ; Zhou J Water Res; 2014 May; 54():137-48. PubMed ID: 24565804 [TBL] [Abstract][Full Text] [Related]
14. Bacterial pathways for degradation of nitroaromatics. Symons ZC; Bruce NC Nat Prod Rep; 2006 Dec; 23(6):845-50. PubMed ID: 17119634 [TBL] [Abstract][Full Text] [Related]
15. A kinetic study of Cr(VI) reduction by calcium polysulfide. Chrysochoou M; Ting A Sci Total Environ; 2011 Sep; 409(19):4072-7. PubMed ID: 21737123 [TBL] [Abstract][Full Text] [Related]
16. Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter. Yu ZG; Peiffer S; Göttlicher J; Knorr KH Environ Sci Technol; 2015 May; 49(9):5441-9. PubMed ID: 25850807 [TBL] [Abstract][Full Text] [Related]
17. The synergistic interaction between sulfate-reducing bacteria and pyrogenic carbonaceous matter in DDT decay. Ding K; Duran M; Xu W Chemosphere; 2019 Oct; 233():252-260. PubMed ID: 31176126 [TBL] [Abstract][Full Text] [Related]
18. Activity and Reactivity of Pyrogenic Carbonaceous Matter toward Organic Compounds. Pignatello JJ; Mitch WA; Xu W Environ Sci Technol; 2017 Aug; 51(16):8893-8908. PubMed ID: 28753285 [TBL] [Abstract][Full Text] [Related]
19. Effects of black carbon and montmorillonite clay on multiphasic hexachlorobenzene desorption from sediments. Chai Y; Qiu X; Davis JW; Budinsky RA; Bartels MJ; Saghir SA Chemosphere; 2007 Oct; 69(8):1204-12. PubMed ID: 17644157 [TBL] [Abstract][Full Text] [Related]
20. Reduction of nitrobenzene with sulfides catalyzed by the black carbons from crop-residue ashes. Gong W; Liu X; Tao L; Xue W; Fu W; Cheng D Environ Sci Pollut Res Int; 2014 May; 21(9):6162-9. PubMed ID: 24474561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]