These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25671437)

  • 1. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices.
    Nowzari A; Heurlin M; Jain V; Storm K; Hosseinnia A; Anttu N; Borgström MT; Pettersson H; Samuelson L
    Nano Lett; 2015 Mar; 15(3):1809-14. PubMed ID: 25671437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption of light in a single vertical nanowire and a nanowire array.
    Anttu N
    Nanotechnology; 2019 Mar; 30(10):104004. PubMed ID: 30572314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient light management in vertical nanowire arrays for photovoltaics.
    Anttu N; Xu HQ
    Opt Express; 2013 May; 21 Suppl 3():A558-75. PubMed ID: 24104444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-Shell CdS-Cu₂S Nanorod Array Solar Cells.
    Wong AB; Brittman S; Yu Y; Dasgupta NP; Yang P
    Nano Lett; 2015 Jun; 15(6):4096-101. PubMed ID: 25993088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Samuelson L; Lehmann S; Pistol ME
    Opt Express; 2014 Nov; 22(23):29204-12. PubMed ID: 25402159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of Strain and Bandgap of Coherently Epitaxially Grown Wurtzite InAsP-InP Core-Shell Nanowires.
    Göransson DJO; Borgström MT; Huang YQ; Messing ME; Hessman D; Buyanova IA; Chen WM; Xu HQ
    Nano Lett; 2019 Apr; 19(4):2674-2681. PubMed ID: 30908918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Light Absorption in Silicon Nanowire Photovoltaic Devices with Dielectric and Metallic Grating Structures.
    Park JS; Kim KH; Hwang MS; Zhang X; Lee JM; Kim J; Song KD; No YS; Jeong KY; Cahoon JF; Kim SK; Park HG
    Nano Lett; 2017 Dec; 17(12):7731-7736. PubMed ID: 29148810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.
    van Dam D; van Hoof NJ; Cui Y; van Veldhoven PJ; Bakkers EP; Gómez Rivas J; Haverkort JE
    ACS Nano; 2016 Dec; 10(12):11414-11419. PubMed ID: 28024324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays.
    Cheng C; Wang TL; Feng L; Li W; Ho KM; Loy MM; Fung KK; Wang N
    Nanotechnology; 2010 Nov; 21(47):475703. PubMed ID: 21030773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometrical optimisation of core-shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells.
    Vismara R; Isabella O; Ingenito A; Si FT; Zeman M
    Beilstein J Nanotechnol; 2019; 10():322-331. PubMed ID: 30800571
    [No Abstract]   [Full Text] [Related]  

  • 11. Core-shell silicon nanowire solar cells.
    Adachi MM; Anantram MP; Karim KS
    Sci Rep; 2013; 3():1546. PubMed ID: 23529071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laterally assembled nanowires for ultrathin broadband solar absorbers.
    Song KD; Kempa TJ; Park HG; Kim SK
    Opt Express; 2014 May; 22 Suppl 3():A992-A1000. PubMed ID: 24922405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of light into nanowire arrays and subsequent absorption.
    Anttu N; Xu HQ
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7183-7. PubMed ID: 21137893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Photovoltaic Charge Generation of Hybrid Heterojunction Core-Shell Silicon Nanowire Arrays: An FDTD Analysis.
    Kumar V; Gupta D; Kumar R
    ACS Omega; 2018 Apr; 3(4):4123-4128. PubMed ID: 31458648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single wire radial junction photovoltaic devices fabricated using aluminum catalyzed silicon nanowires.
    Ke Y; Wang X; Weng XJ; Kendrick CE; Yu YA; Eichfeld SM; Yoon HP; Redwing JM; Mayer TS; Habib YM
    Nanotechnology; 2011 Nov; 22(44):445401. PubMed ID: 21983364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure.
    Bao Q; Li CM; Liao L; Yang H; Wang W; Ke C; Song Q; Bao H; Yu T; Loh KP; Guo J
    Nanotechnology; 2009 Feb; 20(6):065203. PubMed ID: 19417375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.
    Chen Y; Kivisaari P; Pistol ME; Anttu N
    Nanotechnology; 2016 Oct; 27(43):435404. PubMed ID: 27659909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting.
    Wu D; Tang X; Wang K; He Z; Li X
    Nanoscale Res Lett; 2017 Nov; 12(1):604. PubMed ID: 29177708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Yield Growth and Characterization of ⟨100⟩ InP p-n Diode Nanowires.
    Cavalli A; Wang J; Esmaeil Zadeh I; Reimer ME; Verheijen MA; Soini M; Plissard SR; Zwiller V; Haverkort JE; Bakkers EP
    Nano Lett; 2016 May; 16(5):3071-7. PubMed ID: 27045232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.