These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25671500)

  • 1. Surface-enhanced nitrate photolysis on ice.
    Marcotte G; Marchand P; Pronovost S; Ayotte P; Laffon C; Parent P
    J Phys Chem A; 2015 Mar; 119(10):1996-2005. PubMed ID: 25671500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrate Photochemistry at the Air-Ice Interface and in Other Ice Reservoirs.
    McFall AS; Edwards KC; Anastasio C
    Environ Sci Technol; 2018 May; 52(10):5710-5717. PubMed ID: 29667816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pinch of salt is all it takes: chemistry at the frozen water surface.
    Kahan TF; Wren SN; Donaldson DJ
    Acc Chem Res; 2014 May; 47(5):1587-94. PubMed ID: 24785086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of acetic acid on ice studied by ambient-pressure XPS and partial-electron-yield NEXAFS spectroscopy at 230-240 K.
    Křepelová A; Bartels-Rausch T; Brown MA; Bluhm H; Ammann M
    J Phys Chem A; 2013 Jan; 117(2):401-9. PubMed ID: 23252403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthracene photolysis in aqueous solution and ice: photon flux dependence and comparison of kinetics in bulk ice and at the air-ice interface.
    Kahan TF; Zhao R; Jumaa KB; Donaldson DJ
    Environ Sci Technol; 2010 Feb; 44(4):1302-6. PubMed ID: 20092301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate ion photolysis in thin water films in the presence of bromide ions.
    Richards NK; Wingen LM; Callahan KM; Nishino N; Kleinman MT; Tobias DJ; Finlayson-Pitts BJ
    J Phys Chem A; 2011 Jun; 115(23):5810-21. PubMed ID: 21291193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.
    Gerber RB; Varner ME; Hammerich AD; Riikonen S; Murdachaew G; Shemesh D; Finlayson-Pitts BJ
    Acc Chem Res; 2015 Feb; 48(2):399-406. PubMed ID: 25647299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide.
    Chu L; Anastasio C
    J Phys Chem A; 2005 Jul; 109(28):6264-71. PubMed ID: 16833967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces.
    Kahan TF; Donaldson DJ
    J Phys Chem A; 2007 Feb; 111(7):1277-85. PubMed ID: 17256828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry.
    Meusinger C; Berhanu TA; Erbland J; Savarino J; Johnson MS
    J Chem Phys; 2014 Jun; 140(24):244305. PubMed ID: 24985636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions.
    Scharko NK; Berke AE; Raff JD
    Environ Sci Technol; 2014 Oct; 48(20):11991-2001. PubMed ID: 25271384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Coadsorbed Water on the Heterogeneous Photochemistry of Nitrates Adsorbed on TiO
    Ostaszewski CJ; Stuart NM; Lesko DMB; Kim D; Lueckheide MJ; Navea JG
    J Phys Chem A; 2018 Aug; 122(31):6360-6371. PubMed ID: 30021433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Surface of Ice under Equilibrium and Nonequilibrium Conditions.
    Nagata Y; Hama T; Backus EHG; Mezger M; Bonn D; Bonn M; Sazaki G
    Acc Chem Res; 2019 Apr; 52(4):1006-1015. PubMed ID: 30925035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of gas phase NO2 and halogens from the photolysis of thin water films containing nitrate, chloride and bromide ions at room temperature.
    Richards-Henderson NK; Callahan KM; Nissenson P; Nishino N; Tobias DJ; Finlayson-Pitts BJ
    Phys Chem Chem Phys; 2013 Oct; 15(40):17636-46. PubMed ID: 24042539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of cations on NO2 production from the photolysis of aqueous thin water films of nitrate salts.
    Richards-Henderson NK; Anderson C; Anastasio C; Finlayson-Pitts BJ
    Phys Chem Chem Phys; 2015 Dec; 17(48):32211-8. PubMed ID: 26577172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced aqueous photochemical reaction rates after freezing.
    Grannas AM; Bausch AR; Mahanna KM
    J Phys Chem A; 2007 Nov; 111(43):11043-9. PubMed ID: 17918916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of oxygen atoms and nitric oxide molecules from the ultraviolet photodissociation of nitrate adsorbed on water ice films at 100 K.
    Yabushita A; Kawanaka N; Kawasaki M; Hamer PD; Shallcross DE
    J Phys Chem A; 2007 Sep; 111(35):8629-34. PubMed ID: 17696502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.
    Liyana-Arachchi TP; Valsaraj KT; Hung FR
    J Phys Chem A; 2012 Mar; 116(10):2519-28. PubMed ID: 22353023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sink or Swim: Ions and Organics at the Ice-Air Interface.
    Hudait A; Allen MT; Molinero V
    J Am Chem Soc; 2017 Jul; 139(29):10095-10103. PubMed ID: 28658949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parahalogenated phenols accelerate the photochemical release of nitrogen oxides from frozen solutions containing nitrate.
    Abida O; Osthoff HD
    J Phys Chem A; 2012 Jun; 116(24):5923-31. PubMed ID: 22214212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.