These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
683 related articles for article (PubMed ID: 25671670)
1. Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor-acceptor conjugated copolymer. Liu C; Yi C; Wang K; Yang Y; Bhatta RS; Tsige M; Xiao S; Gong X ACS Appl Mater Interfaces; 2015 Mar; 7(8):4928-35. PubMed ID: 25671670 [TBL] [Abstract][Full Text] [Related]
2. Molecular weight effect on the efficiency of polymer solar cells. Liu C; Wang K; Hu X; Yang Y; Hsu CH; Zhang W; Xiao S; Gong X; Cao Y ACS Appl Mater Interfaces; 2013 Nov; 5(22):12163-7. PubMed ID: 24180708 [TBL] [Abstract][Full Text] [Related]
3. Effect of PTB7 Properties on the Performance of PTB7:PC₇₁BM Solar Cells. To CH; Ng A; Dong Q; Djurišić AB; Zapien JA; Chan WK; Surya C ACS Appl Mater Interfaces; 2015 Jun; 7(24):13198-207. PubMed ID: 26039900 [TBL] [Abstract][Full Text] [Related]
4. Enhanced performance and morphological evolution of PTB7:PC71BM polymer solar cells by using solvent mixtures with different additives. Huang D; Li Y; Xu Z; Zhao S; Zhao L; Zhao J Phys Chem Chem Phys; 2015 Mar; 17(12):8053-60. PubMed ID: 25729790 [TBL] [Abstract][Full Text] [Related]
5. Carrier density effect on recombination in PTB7-based solar cell. Moritomo Y; Yonezawa K; Yasuda T Sci Rep; 2015 Sep; 5():13648. PubMed ID: 26324340 [TBL] [Abstract][Full Text] [Related]
6. The influence of binary processing additives on the performance of polymer solar cells. Liu C; Hu X; Zhong C; Huang M; Wang K; Zhang Z; Gong X; Cao Y; Heeger AJ Nanoscale; 2014 Nov; 6(23):14297-304. PubMed ID: 25322278 [TBL] [Abstract][Full Text] [Related]
7. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells. Kang TE; Cho HH; Cho CH; Kim KH; Kang H; Lee M; Lee S; Kim B; Im C; Kim BJ ACS Appl Mater Interfaces; 2013 Feb; 5(3):861-8. PubMed ID: 23289501 [TBL] [Abstract][Full Text] [Related]
8. A 9,9'-spirobi[9H-fluorene]-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor. Yi J; Wang Y; Luo Q; Lin Y; Tan H; Wang H; Ma CQ Chem Commun (Camb); 2016 Jan; 52(8):1649-52. PubMed ID: 26659142 [TBL] [Abstract][Full Text] [Related]
9. Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC Wang L; Zhao S; Xu Z; Zhao J; Huang D; Zhao L Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773297 [TBL] [Abstract][Full Text] [Related]
10. Benzodithiophene-Dithienylbenzothiadiazole Copolymers for Efficient Polymer Solar Cells: Side-Chain Effect on Photovoltaic Performance. Huang L; Zhang G; Zhang K; Peng Q; Wong MS ACS Appl Mater Interfaces; 2018 Oct; 10(40):34355-34362. PubMed ID: 30209951 [TBL] [Abstract][Full Text] [Related]
11. Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material. Stylianakis MM; Konios D; Kakavelakis G; Charalambidis G; Stratakis E; Coutsolelos AG; Kymakis E; Anastasiadis SH Nanoscale; 2015 Nov; 7(42):17827-35. PubMed ID: 26458268 [TBL] [Abstract][Full Text] [Related]
12. Diblock Copolymer PF-b-PDMAEMA as Effective Cathode Interfacial Material in Polymer Solar Cells. Yuan L; Li J; Wang ZW; Huang P; Zhang KC; Liu Y; Zhu K; Li Z; Cao T; Dong B; Zhou Y; Zhou M; Song B; Li Y ACS Appl Mater Interfaces; 2017 Dec; 9(49):42961-42968. PubMed ID: 29172426 [TBL] [Abstract][Full Text] [Related]
13. Enhanced performance of polymer solar cells by employing a ternary cascade energy structure. An Q; Zhang F; Li L; Zhuo Z; Zhang J; Tang W; Teng F Phys Chem Chem Phys; 2014 Aug; 16(30):16103-9. PubMed ID: 24967655 [TBL] [Abstract][Full Text] [Related]
14. [Understanding the Effected Efficiencies of Polymer Solar Cells Employing Different Fullerene Multiadducts as Acceptors]. Huang D; Xu Z; Zhao SL; Zhao J; Li Y; Zhao L Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2363-7. PubMed ID: 30073818 [TBL] [Abstract][Full Text] [Related]
15. Enhanced performance in inverted polymer solar cells with D-π-A-type molecular dye incorporated on ZnO buffer layer. Song CE; Ryu KY; Hong SJ; Bathula C; Lee SK; Shin WS; Lee JC; Choi SK; Kim JH; Moon SJ ChemSusChem; 2013 Aug; 6(8):1445-54. PubMed ID: 23897708 [TBL] [Abstract][Full Text] [Related]
16. Surface Modification of ZnO Layers via Hydrogen Plasma Treatment for Efficient Inverted Polymer Solar Cells. Papamakarios V; Polydorou E; Soultati A; Droseros N; Tsikritzis D; Douvas AM; Palilis L; Fakis M; Kennou S; Argitis P; Vasilopoulou M ACS Appl Mater Interfaces; 2016 Jan; 8(2):1194-205. PubMed ID: 26696337 [TBL] [Abstract][Full Text] [Related]
17. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
18. Systematic investigation of organic photovoltaic cell charge injection/performance modulation by dipolar organosilane interfacial layers. Song CK; White AC; Zeng L; Leever BJ; Clark MD; Emery JD; Lou SJ; Timalsina A; Chen LX; Bedzyk MJ; Marks TJ ACS Appl Mater Interfaces; 2013 Sep; 5(18):9224-40. PubMed ID: 23942417 [TBL] [Abstract][Full Text] [Related]
19. Functionalized Graphene Oxide Enables a High-Performance Bulk Heterojunction Organic Solar Cell with a Thick Active Layer. Lyu CK; Zheng F; Babu BH; Niu MS; Feng L; Yang JL; Qin W; Hao XT J Phys Chem Lett; 2018 Nov; 9(21):6238-6248. PubMed ID: 30240225 [TBL] [Abstract][Full Text] [Related]
20. Silaindacenodithiophene-based molecular donor: morphological features and use in the fabrication of compositionally tolerant, high-efficiency bulk heterojunction solar cells. Love JA; Nagao I; Huang Y; Kuik M; Gupta V; Takacs CJ; Coughlin JE; Qi L; van der Poll TS; Kramer EJ; Heeger AJ; Nguyen TQ; Bazan GC J Am Chem Soc; 2014 Mar; 136(9):3597-606. PubMed ID: 24559286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]