These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25671678)

  • 21. Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates.
    Prabaswara A; Kim H; Min JW; Subedi RC; Anjum DH; Davaasuren B; Moore K; Conroy M; Mitra S; Roqan IS; Ng TK; Alshareef HN; Ooi BS
    ACS Nano; 2020 Feb; 14(2):2202-2211. PubMed ID: 31986010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation mechanisms of GaN nanowires grown by selective area growth homoepitaxy.
    Gačević Ž; Gómez Sánchez D; Calleja E
    Nano Lett; 2015 Feb; 15(2):1117-21. PubMed ID: 25603117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of Ga Surface Diffusion in the Elongation Mechanism and Optical Properties of Catalyst-Free GaN Nanowires Grown by Molecular Beam Epitaxy.
    Gruart M; Jacopin G; Daudin B
    Nano Lett; 2019 Jul; 19(7):4250-4256. PubMed ID: 31241343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy.
    Fernández-Garrido S; Kaganer VM; Sabelfeld KK; Gotschke T; Grandal J; Calleja E; Geelhaar L; Brandt O
    Nano Lett; 2013 Jul; 13(7):3274-80. PubMed ID: 23758601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles.
    Bugallo Ade L; Tchernycheva M; Jacopin G; Rigutti L; Julien FH; Chou ST; Lin YT; Tseng PH; Tu LW
    Nanotechnology; 2010 Aug; 21(31):315201. PubMed ID: 20634569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterogeneous nucleation of catalyst-free InAs nanowires on silicon.
    Gomes UP; Ercolani D; Zannier V; Battiato S; Ubyivovk E; Mikhailovskii V; Murata Y; Heun S; Beltram F; Sorba L
    Nanotechnology; 2017 Feb; 28(6):065603. PubMed ID: 28071603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy.
    Dubrovskii VG; Sibirev NV; Cirlin GE; Harmand JC; Ustinov VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021603. PubMed ID: 16605346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth mechanism of GaN nanowires: preferred nucleation site and effect of hydrogen.
    Lim SK; Crawford S; Gradecak S
    Nanotechnology; 2010 Aug; 21(34):345604. PubMed ID: 20683137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation between the structural and optical properties of spontaneously formed GaN nanowires: a quantitative evaluation of the impact of nanowire coalescence.
    Fernández-Garrido S; Kaganer VM; Hauswald C; Jenichen B; Ramsteiner M; Consonni V; Geelhaar L; Brandt O
    Nanotechnology; 2014 Nov; 25(45):455702. PubMed ID: 25327280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.
    Liu B; Yang B; Yuan F; Liu Q; Shi D; Jiang C; Zhang J; Staedler T; Jiang X
    Nano Lett; 2015 Dec; 15(12):7837-46. PubMed ID: 26517395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does desorption affect the length distributions of nanowires?
    Dubrovskii VG; Barcus J; Kim W; Vukajlovic-Plestina J; I Morral AF
    Nanotechnology; 2019 Nov; 30(47):475604. PubMed ID: 31416057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epitaxy of GaN Nanowires on Graphene.
    Kumaresan V; Largeau L; Madouri A; Glas F; Zhang H; Oehler F; Cavanna A; Babichev A; Travers L; Gogneau N; Tchernycheva M; Harmand JC
    Nano Lett; 2016 Aug; 16(8):4895-902. PubMed ID: 27414518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring the morphology and luminescence of GaN/InGaN core-shell nanowires using bottom-up selective-area epitaxy.
    Nami M; Eller RF; Okur S; Rishinaramangalam AK; Liu S; Brener I; Feezell DF
    Nanotechnology; 2017 Jan; 28(2):025202. PubMed ID: 27905321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices.
    Sarwar AT; Carnevale SD; Yang F; Kent TF; Jamison JJ; McComb DW; Myers RC
    Small; 2015 Oct; 11(40):5402-8. PubMed ID: 26307552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns.
    Kishino K; Ishizawa S
    Nanotechnology; 2015 Jun; 26(22):225602. PubMed ID: 25965011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface passivation and self-regulated shell growth in selective area-grown GaN-(Al,Ga)N core-shell nanowires.
    Hetzl M; Winnerl J; Francaviglia L; Kraut M; Döblinger M; Matich S; Fontcuberta I Morral A; Stutzmann M
    Nanoscale; 2017 Jun; 9(21):7179-7188. PubMed ID: 28513695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires.
    Liu Q; Liu B; Yang W; Yang B; Zhang X; Labbé C; Portier X; An V; Jiang X
    Nanoscale; 2017 Apr; 9(16):5212-5221. PubMed ID: 28397937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiO(x) by catalyst-free molecular beam epitaxy.
    Zhao S; Kibria MG; Wang Q; Nguyen HP; Mi Z
    Nanoscale; 2013 Jun; 5(12):5283-7. PubMed ID: 23661186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Foreign-catalyst-free GaSb nanowires directly grown on cleaved Si substrates by molecular-beam epitaxy.
    Wen L; Pan D; Liao D; Zhao J
    Nanotechnology; 2020 Apr; 31(15):155601. PubMed ID: 31783375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AlGaN Nanowires for Ultraviolet Light-Emitting: Recent Progress, Challenges, and Prospects.
    Zhao S; Lu J; Hai X; Yin X
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31979274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.