These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 25671790)
1. Star-shaped PCL/PLLA blended fiber membrane via electrospinning. Li H; Qiao T; Song P; Guo H; Song X; Zhang B; Chen X J Biomater Sci Polym Ed; 2015; 26(7):420-32. PubMed ID: 25671790 [TBL] [Abstract][Full Text] [Related]
2. Effect of blending HA-g-PLLA on xanthohumol-loaded PLGA fiber membrane. Qiao T; Jiang S; Song P; Song X; Liu Q; Wang L; Chen X Colloids Surf B Biointerfaces; 2016 Oct; 146():221-7. PubMed ID: 27343844 [TBL] [Abstract][Full Text] [Related]
3. Development of novel aligned nanofibrous composite membranes for guided bone regeneration. Kharaziha M; Fathi MH; Edris H J Mech Behav Biomed Mater; 2013 Aug; 24():9-20. PubMed ID: 23706988 [TBL] [Abstract][Full Text] [Related]
4. Mechanical testing of electrospun PCL fibers. Croisier F; Duwez AS; Jérôme C; Léonard AF; van der Werf KO; Dijkstra PJ; Bennink ML Acta Biomater; 2012 Jan; 8(1):218-24. PubMed ID: 21878398 [TBL] [Abstract][Full Text] [Related]
5. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Fujihara K; Kotaki M; Ramakrishna S Biomaterials; 2005 Jul; 26(19):4139-47. PubMed ID: 15664641 [TBL] [Abstract][Full Text] [Related]
6. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
7. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
8. Bladder smooth muscle cells on electrospun poly(ε-caprolactone)/poly(l-lactic acid) scaffold promote bladder regeneration in a canine model. Shakhssalim N; Soleimani M; Dehghan MM; Rasouli J; Taghizadeh-Jahed M; Torbati PM; Naji M Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():877-884. PubMed ID: 28415542 [TBL] [Abstract][Full Text] [Related]
9. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of PLLA/chitosan-graft-poly (ε-caprolactone) (CS-g-PCL) composite fibrous mats: The microstructure, performance and proliferation assessment. Xu Y; Liu B; Zou L; Sun C; Li W Int J Biol Macromol; 2020 Nov; 162():320-332. PubMed ID: 32574742 [TBL] [Abstract][Full Text] [Related]
11. Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity. Bala Balakrishnan P; Gardella L; Forouharshad M; Pellegrino T; Monticelli O Colloids Surf B Biointerfaces; 2018 Jan; 161():488-496. PubMed ID: 29128835 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of cell affinity on poly(L-lactide) and poly(epsilon-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. Ajami-Henriquez D; Rodríguez M; Sabino M; Castillo RV; Müller AJ; Boschetti-de-Fierro A; Abetz C; Abetz V; Dubois P J Biomed Mater Res A; 2008 Nov; 87(2):405-17. PubMed ID: 18186046 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
14. Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes. Kim HW; Knowles JC; Kim HE J Biomed Mater Res A; 2004 Sep; 70(3):467-79. PubMed ID: 15293321 [TBL] [Abstract][Full Text] [Related]
15. Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration. Li L; Li G; Jiang J; Liu X; Luo L; Nan K J Mater Sci Mater Med; 2012 Feb; 23(2):547-54. PubMed ID: 22143907 [TBL] [Abstract][Full Text] [Related]
16. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. Sui G; Yang X; Mei F; Hu X; Chen G; Deng X; Ryu S J Biomed Mater Res A; 2007 Aug; 82(2):445-54. PubMed ID: 17295252 [TBL] [Abstract][Full Text] [Related]
17. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers. Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335 [TBL] [Abstract][Full Text] [Related]
18. Development, characterization, and cellular adhesion of poly(L-lactic acid)/poly(caprolactone triol) membranes for potential application in bone tissue regeneration. Mistura DV; Messias AD; Duek EA; Duarte MA Artif Organs; 2013 Nov; 37(11):978-84. PubMed ID: 24237398 [TBL] [Abstract][Full Text] [Related]
19. In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. Guo Z; Xu J; Ding S; Li H; Zhou C; Li L J Biomater Sci Polym Ed; 2015; 26(15):989-1001. PubMed ID: 26123758 [TBL] [Abstract][Full Text] [Related]
20. Development of electrospun three-arm star poly(ε-caprolactone) meshes for tissue engineering applications. Puppi D; Detta N; Piras AM; Chiellini F; Clarke DA; Reilly GC; Chiellini E Macromol Biosci; 2010 Aug; 10(8):887-97. PubMed ID: 20376838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]