BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25672272)

  • 1. PAH contamination in soils adjacent to a coal-transporting facility in Tapin district, south Kalimantan, Indonesia.
    Mizwar A; Trihadiningrum Y
    Arch Environ Contam Toxicol; 2015 Jul; 69(1):62-8. PubMed ID: 25672272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of polycyclic aromatic hydrocarbons (PAHs) contamination in surface soil of coal stockpile sites in South Kalimantan, Indonesia.
    Mizwar A; Priatmadi BJ; Abdi C; Trihadiningrum Y
    Environ Monit Assess; 2016 Mar; 188(3):152. PubMed ID: 26861742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and risk assessment of polycyclic aromatic hydrocarbons in soil from the Tiefa coal mine district, Liaoning, China.
    Liu J; Liu G; Zhang J; Yin H; Wang R
    J Environ Monit; 2012 Oct; 14(10):2634-42. PubMed ID: 22914869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental assessment of PAHs in soils around the Anhui Coal District, China.
    Wang R; Liu G; Chou CL; Liu J; Zhang J
    Arch Environ Contam Toxicol; 2010 Jul; 59(1):62-70. PubMed ID: 20091163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Distribution of Polycyclic Aromatic Hydrocarbon (PAH) Concentrations in Soils from Bursa, Turkey.
    Karaca G
    Arch Environ Contam Toxicol; 2016 Feb; 70(2):406-17. PubMed ID: 26658619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and Sources of Polycyclic Aromatic Hydrocarbons in Soil and Plant Samples of a Coal Mining Area in Nigeria.
    Ugwu KE; Ukoha PO
    Bull Environ Contam Toxicol; 2016 Mar; 96(3):383-7. PubMed ID: 26758607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas.
    Bojes HK; Pope PG
    Regul Toxicol Pharmacol; 2007 Apr; 47(3):288-95. PubMed ID: 17291653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and potential sources of polycyclic aromatic hydrocarbons in soils around coal-fired power plants in South Africa.
    Okedeyi OO; Nindi MM; Dube S; Awofolu OR
    Environ Monit Assess; 2013 Mar; 185(3):2073-82. PubMed ID: 22661359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A source mixing model to apportion PAHs from coal tar and asphalt binders in street pavements and urban aquatic sediments.
    Ahrens MJ; Depree CV
    Chemosphere; 2010 Dec; 81(11):1526-35. PubMed ID: 20843538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of land use activities on PAH contamination in urban soils of Rawalpindi and Islamabad, Pakistan.
    Ud Din I; Rashid A; Mahmood T; Khalid A
    Environ Monit Assess; 2013 Oct; 185(10):8685-94. PubMed ID: 23595691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characterization and potential risks of polycyclic aromatic hydrocarbons in green space soils of educational areas in Beijing].
    Peng C; Wang ME; Ouyang ZY; Jiao WT; Chen WP
    Huan Jing Ke Xue; 2012 Feb; 33(2):592-8. PubMed ID: 22509602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants.
    Chen Y; Wang C; Wang Z
    Environ Int; 2005 Aug; 31(6):778-83. PubMed ID: 16005065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk.
    Wang XT; Miao Y; Zhang Y; Li YC; Wu MH; Yu G
    Sci Total Environ; 2013 Mar; 447():80-9. PubMed ID: 23376519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levels, distribution and source characterization of polycyclic aromatic hydrocarbons (PAHs) in topsoils and roadside soils in Esbjerg, Denmark.
    Essumang DK; Kowalski K; Sogaard EG
    Bull Environ Contam Toxicol; 2011 Apr; 86(4):438-43. PubMed ID: 21373940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil.
    Juhasz AL; Weber J; Stevenson G; Slee D; Gancarz D; Rofe A; Smith E
    Sci Total Environ; 2014 Mar; 473-474():147-54. PubMed ID: 24368196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of polycyclic aromatic hydrocarbons (PAHs) pollution in soil of suburban areas in Tianjin, China.
    Lv J; Shi R; Cai Y; Liu Y
    Bull Environ Contam Toxicol; 2010 Jul; 85(1):5-9. PubMed ID: 20411238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications.
    Biache C; Mansuy-Huault L; Faure P
    J Hazard Mater; 2014 Feb; 267():31-9. PubMed ID: 24413049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing human exposure to polycyclic aromatic hydrocarbons (PAH) in a petrochemical region utilizing data from environmental biomonitors.
    Augusto S; Pereira MJ; Máguas C; Soares A; Branquinho C
    J Toxicol Environ Health A; 2012; 75(13-15):819-30. PubMed ID: 22788369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging PAHs in urban soils: Concentrations, bioaccessibility, and spatial distribution.
    Gao P; da Silva EB; Townsend T; Liu X; Ma LQ
    Sci Total Environ; 2019 Jun; 670():800-805. PubMed ID: 30921713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro gastrointestinal mobilization and oral bioaccessibility of PAHs in contrasting soils and associated cancer risks: Focus on PAH nonextractable residues.
    Umeh AC; Duan L; Naidu R; Esposito M; Semple KT
    Environ Int; 2019 Dec; 133(Pt A):105186. PubMed ID: 31639608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.