These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25672543)

  • 1. The epileptic thalamocortical network is a macroscopic self-sustained oscillator: evidence from frequency-locking experiments in rat brains.
    Velazquez JL; Erra RG; Rosenblum M
    Sci Rep; 2015 Feb; 5():8423. PubMed ID: 25672543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats.
    Meeren HK; Pijn JP; Van Luijtelaar EL; Coenen AM; Lopes da Silva FH
    J Neurosci; 2002 Feb; 22(4):1480-95. PubMed ID: 11850474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sinusoidal modeling of ictal activity along a thalamus-to-cortex seizure pathway I: new coherence approaches.
    Sherman DL; Patel CB; Zhang N; Rossell LA; Tsai YC; Thakor NV; Mirski MA
    Ann Biomed Eng; 2004 Sep; 32(9):1252-64. PubMed ID: 15493512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental thalamic focus and thalamocortical epileptogenic mechanisms in the brain of turtle.
    Servít Z; Strejcková A
    Epilepsia; 1973 Dec; 14(4):437-45. PubMed ID: 4521100
    [No Abstract]   [Full Text] [Related]  

  • 6. Thalamocortical oscillations in a genetic model of absence seizures.
    D'Arcangelo G; D'Antuono M; Biagini G; Warren R; Tancredi V; Avoli M
    Eur J Neurosci; 2002 Dec; 16(12):2383-93. PubMed ID: 12492433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of thalamocortical oscillations following traumatic brain injury in rats.
    Kao C; Forbes JA; Jermakowicz WJ; Sun DA; Davis B; Zhu J; Lagrange AH; Konrad PE
    J Neurosurg; 2012 Aug; 117(2):316-23. PubMed ID: 22631688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antidromic and orthodromic activation of epileptic neurons in neocortex of awake monkey.
    Wyler AR; Fetz EE; Ward AA
    Exp Neurol; 1974 Apr; 43(1):59-74. PubMed ID: 4856433
    [No Abstract]   [Full Text] [Related]  

  • 9. After-discharge bursts in cobalt and penicillin foci in primate cortex.
    Grimm RJ; Frazee JG; Ozbay S
    Electroencephalogr Clin Neurophysiol; 1973 Mar; 34(3):281-301. PubMed ID: 4129615
    [No Abstract]   [Full Text] [Related]  

  • 10. From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy.
    Blumenfeld H
    Epilepsia; 2003; 44 Suppl 2():7-15. PubMed ID: 12752456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somato-sensory evoked potentials in thalamus and cortex of man.
    Pagni CA
    Electroencephalogr Clin Neurophysiol; 1967; ():Suppl 26:147+. PubMed ID: 4177620
    [No Abstract]   [Full Text] [Related]  

  • 12. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of Firing Mode.
    Sorokin JM; Davidson TJ; Frechette E; Abramian AM; Deisseroth K; Huguenard JR; Paz JT
    Neuron; 2017 Jan; 93(1):194-210. PubMed ID: 27989462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The propagation of epileptic events.
    Williams D
    Mod Trends Neurol; 1970; 5(0):287-95. PubMed ID: 5006118
    [No Abstract]   [Full Text] [Related]  

  • 15. Cortical deactivation induced by subcortical network dysfunction in limbic seizures.
    Englot DJ; Modi B; Mishra AM; DeSalvo M; Hyder F; Blumenfeld H
    J Neurosci; 2009 Oct; 29(41):13006-18. PubMed ID: 19828814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thalamocortical relations and the genesis of epileptic electrographic phenomena in the forebrain of the turtle.
    Servít Z; Strejcková A
    Exp Neurol; 1972 Apr; 35(1):50-60. PubMed ID: 5026414
    [No Abstract]   [Full Text] [Related]  

  • 17. Involvement of the thalamocortical system in epileptic loss of consciousness.
    Kostopoulos GK
    Epilepsia; 2001; 42 Suppl 3():13-9. PubMed ID: 11520316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic implications of modulation of metabolism and functional activity of cerebral cortex by chronic stimulation of cerebellum and thalamus.
    Cooper IS; Upton AR
    Biol Psychiatry; 1985 Jul; 20(7):811-3. PubMed ID: 3873965
    [No Abstract]   [Full Text] [Related]  

  • 19. Evoked responses after hemispherectomy.
    Saletu B; Itil TM; Saletu M
    Confin Neurol; 1971; 33(4):221-30. PubMed ID: 5000711
    [No Abstract]   [Full Text] [Related]  

  • 20. The thalamocortical circuit and the generation of epileptic spikes in rat models of focal epilepsy.
    Freestone DR; Grayden DB; Lai A; Nelson TS; Halliday A; Burkitt AN; Cook MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1533-6. PubMed ID: 19963756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.