These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 25672761)

  • 1. Triple bottom line assessment of raw water treatment: methodology and application to a case study in the municipality of Oppegård in south-eastern Norway.
    Venkatesh G; Azrague K; Bell S; Eikebrokk B
    Environ Technol; 2015; 36(13-16):1954-65. PubMed ID: 25672761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable engineered processes to mitigate the global arsenic crisis in drinking water: challenges and progress.
    Sarkar S; Greenleaf JE; Gupta A; Uy D; Sengupta AK
    Annu Rev Chem Biomol Eng; 2012; 3():497-517. PubMed ID: 22541048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants.
    Ribera G; Clarens F; Martínez-Lladó X; Jubany I; V Martí ; Rovira M
    Sci Total Environ; 2014 Jan; 466-467():377-86. PubMed ID: 23917380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Municipal wastewater phosphorus removal by coagulation.
    Yang K; Li Z; Zhang H; Qian J; Chen G
    Environ Technol; 2010 May; 31(6):601-9. PubMed ID: 20540421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water.
    Etmannski TR; Darton RC
    Sci Total Environ; 2014 Aug; 488-489():505-11. PubMed ID: 24284264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in material flows, treatment efficiencies and shifting of environmental loads in the wastewater treatment sector. Part II: case study of Norway.
    Venkatesh G; Brattebo H
    Environ Technol; 2009 Oct; 30(11):1131-43. PubMed ID: 19947144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A streamlined sustainability assessment tool for improved decision making in the urban water industry.
    Schulz M; Short MD; Peters GM
    Integr Environ Assess Manag; 2012 Jan; 8(1):183-93. PubMed ID: 21751340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental impact analysis of chemicals and energy consumption in wastewater treatment plants: case study of Oslo, Norway.
    Venkatesh G; Brattebø H
    Water Sci Technol; 2011; 63(5):1018-31. PubMed ID: 21411954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model studies - a multi-criteria analysis study.
    Sudhakaran S; Lattemann S; Amy GL
    Sci Total Environ; 2013 Jan; 442():478-88. PubMed ID: 23186618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endotoxin contamination and control in surface water sources and a drinking water treatment plant in Beijing, China.
    Can Z; Wenjun L; Wen S; Minglu Z; Lingjia Q; Cuiping L; Fang T
    Water Res; 2013 Jul; 47(11):3591-9. PubMed ID: 23726695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of CO2 emission from water treatment plant--model development and application.
    Kyung D; Kim D; Park N; Lee W
    J Environ Manage; 2013 Dec; 131():74-81. PubMed ID: 24145013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
    Xu P; Capito M; Cath TY
    J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis.
    Zeng G; Jiang R; Huang G; Xu M; Li J
    J Environ Manage; 2007 Jan; 82(2):250-9. PubMed ID: 16635543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of coagulation and flocculation conditions on water quality in an immersed ultrafiltration process.
    Walsh ME; Zhao N; Gora SL; Gagnon GA
    Environ Technol; 2009 Aug; 30(9):927-38. PubMed ID: 19803331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oil removal from water with yellow horn shell residues treated by ionic liquid.
    Li J; Luo M; Zhao CJ; Li CY; Wang W; Zu YG; Fu YJ
    Bioresour Technol; 2013 Jan; 128():673-8. PubMed ID: 23220401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.
    Serrano M; Montesinos I; Cardador MJ; Silva M; Gallego M
    Sci Total Environ; 2015 Jun; 517():246-58. PubMed ID: 25771439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pretreatment of wastewater: optimal coagulant selection using Partial Order Scaling Analysis (POSA).
    Tzfati E; Sein M; Rubinov A; Raveh A; Bick A
    J Hazard Mater; 2011 Jun; 190(1-3):51-9. PubMed ID: 21561709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane bio-reactor for textile wastewater treatment plant upgrading.
    Lubello C; Gori R
    Water Sci Technol; 2005; 52(4):91-8. PubMed ID: 16235750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal.
    Montaña M; Camacho A; Serrano I; Devesa R; Matia L; Vallés I
    J Environ Radioact; 2013 Nov; 125():86-92. PubMed ID: 23369743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiality of lignin from the Kraft pulping process for removal of trace nickel from wastewater: effect of demineralisation.
    Betancur M; Bonelli PR; Velásquez JA; Cukierman AL
    Bioresour Technol; 2009 Feb; 100(3):1130-7. PubMed ID: 18809320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.