These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 25673010)

  • 1. Calcium peroxide from ambient to high pressures.
    Nelson JR; Needs RJ; Pickard CJ
    Phys Chem Chem Phys; 2015 Mar; 17(10):6889-95. PubMed ID: 25673010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational searches for iron oxides at high pressures.
    Weerasinghe GL; Pickard CJ; Needs RJ
    J Phys Condens Matter; 2015 Nov; 27(45):455501. PubMed ID: 26471499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A route to possible civil engineering materials: the case of high-pressure phases of lime.
    Bouibes A; Zaoui A
    Sci Rep; 2015 Jul; 5():12330. PubMed ID: 26202342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Katoite under pressure: an ab initio investigation of its structural, elastic and vibrational properties sheds light on the phase transition.
    Erba A; Navarrete-López AM; Lacivita V; D'Arco P; Zicovich-Wilson CM
    Phys Chem Chem Phys; 2015 Jan; 17(4):2660-9. PubMed ID: 25502836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground-State Crystal Structure of Strontium Peroxide Predicted from First Principles.
    Wang Y; Wang S; Zhang Y; Lv J; Chen Y; Zheng W; Ma Y
    Inorg Chem; 2017 Jul; 56(13):7545-7549. PubMed ID: 28598608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural stability and thermal properties of BeO from the quasiharmonic approximation.
    Wdowik UD
    J Phys Condens Matter; 2010 Feb; 22(4):045404. PubMed ID: 21386315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical predictions for low-temperature phases, softening of phonons and elastic stiffnesses, and electronic properties of sodium peroxide under high pressure.
    Jimlim P; Tsuppayakorn-Aek P; Pakornchote T; Ektarawong A; Pinsook U; Bovornratanaraks T
    RSC Adv; 2019 Sep; 9(53):30964-30975. PubMed ID: 35529358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase stability and lattice dynamics of ammonium azide under hydrostatic compression.
    Yedukondalu N; Vaitheeswaran G; Anees P; Valsakumar MC
    Phys Chem Chem Phys; 2015 Nov; 17(43):29210-25. PubMed ID: 26465777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study on thermodynamic properties and phase transitions in TiS(2).
    Yu YG; Ross NL
    J Phys Condens Matter; 2011 Feb; 23(5):055401. PubMed ID: 21406908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel superhard B-C-O phases predicted from first principles.
    Wang S; Oganov AR; Qian G; Zhu Q; Dong H; Dong X; Davari Esfahani MM
    Phys Chem Chem Phys; 2016 Jan; 18(3):1859-63. PubMed ID: 26686242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure prediction of LiBeH3 using ab initio total-energy calculations and evolutionary simulations.
    Hu CH; Oganov AR; Wang YM; Zhou HY; Lyakhov A; Hafner J
    J Chem Phys; 2008 Dec; 129(23):234105. PubMed ID: 19102524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice dynamics and thermodynamics of molybdenum from first-principles calculations.
    Zeng ZY; Hu CE; Cai LC; Chen XR; Jing FQ
    J Phys Chem B; 2010 Jan; 114(1):298-310. PubMed ID: 20017466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel magnesium borides and their superconductivity.
    Davari Esfahani MM; Zhu Q; Dong H; Oganov AR; Wang S; Rakitin MS; Zhou XF
    Phys Chem Chem Phys; 2017 Jun; 19(22):14486-14494. PubMed ID: 28534591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase stability and mechanical properties of tungsten borides from first principles calculations.
    Zhao E; Meng J; Ma Y; Wu Z
    Phys Chem Chem Phys; 2010 Oct; 12(40):13158-65. PubMed ID: 20820475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of dynamical instability in the ab initio phase diagram of calcium.
    Di Gennaro M; Saha SK; Verstraete MJ
    Phys Rev Lett; 2013 Jul; 111(2):025503. PubMed ID: 23889418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconducting high-pressure phases of disilane.
    Jin X; Meng X; He Z; Ma Y; Liu B; Cui T; Zou G; Mao HK
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):9969-73. PubMed ID: 20479272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-pressure structures of yttrium hydrides.
    Liu LL; Sun HJ; Wang CZ; Lu WC
    J Phys Condens Matter; 2017 Aug; 29(32):325401. PubMed ID: 28598334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure induced structural phase transition in solid oxidizer KClO3: a first-principles study.
    Yedukondalu N; Ghule VD; Vaitheeswaran G
    J Chem Phys; 2013 May; 138(17):174701. PubMed ID: 23656146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-pressure structures of disilane and their superconducting properties.
    Flores-Livas JA; Amsler M; Lenosky TJ; Lehtovaara L; Botti S; Marques MA; Goedecker S
    Phys Rev Lett; 2012 Mar; 108(11):117004. PubMed ID: 22540502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid functional study rationalizes the simple cubic phase of calcium at high pressures.
    Liu H; Cui W; Ma Y
    J Chem Phys; 2012 Nov; 137(18):184502. PubMed ID: 23163378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.