These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 25673139)
1. Zinc ion implantation‑deposition technique improves the osteoblast biocompatibility of titanium surfaces. Liang Y; Xu J; Chen J; Qi M; Xie X; Hu M Mol Med Rep; 2015 Jun; 11(6):4225-31. PubMed ID: 25673139 [TBL] [Abstract][Full Text] [Related]
2. Zinc ion implantation-deposition modification of titanium for enhanced adhesion of focal plaques of osteoblast-like cells. Xu J; Hu M; Tan XY; Liu CK Chin Med J (Engl); 2013; 126(18):3557-60. PubMed ID: 24034108 [TBL] [Abstract][Full Text] [Related]
4. [Character of zinc-modified titanium surface and its antibacterial property to S.mutans]. Xu J; Hu M; Tan XY; Liu HW; Tao Y Shanghai Kou Qiang Yi Xue; 2013 Apr; 22(2):151-5. PubMed ID: 23708026 [TBL] [Abstract][Full Text] [Related]
5. PIIID-formed (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti coatings on NiTi shape memory alloy for medical applications. Sun T; Wang LP; Wang M; Tong HW; Lu WW Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1469-79. PubMed ID: 24364947 [TBL] [Abstract][Full Text] [Related]
6. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Lincks J; Boyan BD; Blanchard CR; Lohmann CH; Liu Y; Cochran DL; Dean DD; Schwartz Z Biomaterials; 1998 Dec; 19(23):2219-32. PubMed ID: 9884063 [TBL] [Abstract][Full Text] [Related]
7. Osteoblast-like cell attachment and proliferation on turned, blasted, and anodized titanium surfaces. Pae A; Kim SS; Kim HS; Woo YH Int J Oral Maxillofac Implants; 2011; 26(3):475-81. PubMed ID: 21691593 [TBL] [Abstract][Full Text] [Related]
8. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761 [TBL] [Abstract][Full Text] [Related]
9. Incorporating zinc ion into titanium surface promotes osteogenesis and osteointegration in implantation early phase. Tian X; Zhang P; Xu J J Mater Sci Mater Med; 2023 Nov; 34(11):55. PubMed ID: 37917203 [TBL] [Abstract][Full Text] [Related]
10. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell. Kim BS; Kim JS; Park YM; Choi BY; Lee J Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1554-60. PubMed ID: 23827608 [TBL] [Abstract][Full Text] [Related]
11. Oxygen plasma immersion ion implantation treatment enhances the human bone marrow mesenchymal stem cells responses to titanium surface for dental implant application. Yang CH; Li YC; Tsai WF; Ai CF; Huang HH Clin Oral Implants Res; 2015 Feb; 26(2):166-75. PubMed ID: 24313899 [TBL] [Abstract][Full Text] [Related]
12. Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. Kim HJ; Kim SH; Kim MS; Lee EJ; Oh HG; Oh WM; Park SW; Kim WJ; Lee GJ; Choi NG; Koh JT; Dinh DB; Hardin RR; Johnson K; Sylvia VL; Schmitz JP; Dean DD J Biomed Mater Res A; 2005 Sep; 74(3):366-73. PubMed ID: 15983984 [TBL] [Abstract][Full Text] [Related]
13. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408 [TBL] [Abstract][Full Text] [Related]
14. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces. Park JW; Kim YJ; Jang JH Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830 [TBL] [Abstract][Full Text] [Related]
15. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830 [TBL] [Abstract][Full Text] [Related]
16. [Effect of modification of titanium surfaces to graft poly(ethylene glycol)methacrylate-arginine-glycine-aspartic polymer brushes on bacterial adhesion and osteoblast cell attachment]. Liu D; Gong YJ; Xiao Q; Li ZA Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Aug; 51(8):491-5. PubMed ID: 27511041 [TBL] [Abstract][Full Text] [Related]
17. Effects of fluoride-modified titanium surfaces with the similar roughness on RUNX2 gene expression of osteoblast-like MG63 cells. Lee JH; Koak JY; Lim YJ; Kwon HB; Kong H; Kim MJ J Biomed Mater Res A; 2017 Nov; 105(11):3102-3109. PubMed ID: 28730623 [TBL] [Abstract][Full Text] [Related]
18. Zn-Incorporated TiO Chen B; You Y; Ma A; Song Y; Jiao J; Song L; Shi E; Zhong X; Li Y; Li C Int J Nanomedicine; 2020; 15():2095-2118. PubMed ID: 32273705 [TBL] [Abstract][Full Text] [Related]
19. The osteogenesis performance of titanium modified via plasma-enhanced chemical vapor deposition: in vitro and in vivo studies. Yu W; Wang X; Guo Y; Yang S; Zhou Z; Sun X; Zhang R; Guo T; Zhou Y; Zhao J Biomed Mater; 2020 Aug; 15(5):055012. PubMed ID: 32857733 [TBL] [Abstract][Full Text] [Related]
20. Effects of fluoride-ion-implanted titanium surface on the cytocompatibility in vitro and osseointegatation in vivo for dental implant applications. Wang XJ; Liu HY; Ren X; Sun HY; Zhu LY; Ying XX; Hu SH; Qiu ZW; Wang LP; Wang XF; Ma GW Colloids Surf B Biointerfaces; 2015 Dec; 136():752-60. PubMed ID: 26519937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]