These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 25673286)
1. Glial and perivascular structures in the subfornical organ: distinguishing the shell and core. Pócsai K; Kálmán M J Histochem Cytochem; 2015 May; 63(5):367-83. PubMed ID: 25673286 [TBL] [Abstract][Full Text] [Related]
2. Three-plane description of astroglial populations of OVLT subdivisions in rat: Tanycyte connections to distant parts of third ventricle. Kálmán M; Oszwald E; Pócsai K J Comp Neurol; 2019 Dec; 527(17):2793-2812. PubMed ID: 31045238 [TBL] [Abstract][Full Text] [Related]
3. Three-plane description of astroglial architecture and gliovascular connections of area postrema in rat: Long tanycyte connections to other parts of brainstem. Kálmán M; Oszwald E; Pócsai K J Comp Neurol; 2023 Jun; 531(8):866-887. PubMed ID: 36994627 [TBL] [Abstract][Full Text] [Related]
4. Components of the basal lamina and dystrophin-dystroglycan complex in the neurointermediate lobe of rat pituitary gland: different localizations of beta-dystroglycan, dystrobrevins, alpha1-syntrophin, and aquaporin-4. Pócsai K; Bagyura Z; Kálmán M J Histochem Cytochem; 2010 May; 58(5):463-79. PubMed ID: 20124096 [TBL] [Abstract][Full Text] [Related]
5. Appearance of β-dystroglycan precedes the formation of glio-vascular end-feet in developing rat brain. Kálmán M; Oszwald E; Adorján I Eur J Histochem; 2018 May; 62(2):2908. PubMed ID: 29943956 [TBL] [Abstract][Full Text] [Related]
6. Distribution of components of basal lamina and dystrophin-dystroglycan complex in the rat pineal gland: differences from the brain tissue and between the subdivisions of the gland. Bagyura Z; Pócsai K; Kálmán M Histol Histopathol; 2010 Jan; 25(1):1-14. PubMed ID: 19924636 [TBL] [Abstract][Full Text] [Related]
7. Post traumatic lesion absence of beta-dystroglycan-immunopositivity in brain vessels coincides with the glial reaction and the immunoreactivity of vascular laminin. Szabó A; Kálmán M Curr Neurovasc Res; 2008 Aug; 5(3):206-13. PubMed ID: 18691079 [TBL] [Abstract][Full Text] [Related]
8. Disappearance of cerebrovascular laminin immunoreactivity as related to the maturation of astroglia in rat brain. Kálmán M; Oszwald E; Pócsai K; Bagyura Z; Adorján I Int J Dev Neurosci; 2018 Oct; 69():97-105. PubMed ID: 30009882 [TBL] [Abstract][Full Text] [Related]
9. Heterogeneous occurrence of aquaporin-4 in the ependyma and in the circumventricular organs in rat and chicken. Goren O; Adorján I; Kálmán M Anat Embryol (Berl); 2006 Mar; 211(2):155-72. PubMed ID: 16416308 [TBL] [Abstract][Full Text] [Related]
10. Glial architecture of the ghost shark (Callorhinchus milii, Holocephali, Chondrichthyes) as revealed by different immunohistochemical markers. Ari C; Kálmán M J Exp Zool B Mol Dev Evol; 2008 Sep; 310(6):504-19. PubMed ID: 18512702 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory role of lentivirus-mediated aquaporin-4 gene silencing in the formation of glial scar in a rat model of traumatic brain injury. Yong YX; Li YM; Lian J; Luo CM; Zhong DX; Han K J Cell Biochem; 2019 Jan; 120(1):368-379. PubMed ID: 30246455 [TBL] [Abstract][Full Text] [Related]
12. Distribution of beta-dystroglycan immunopositive globules in the subventricular zone of rat brain. Adorjan I; Kalman M Glia; 2009 Apr; 57(6):657-66. PubMed ID: 18985737 [TBL] [Abstract][Full Text] [Related]
13. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. Arochena M; Anadón R; Díaz-Regueira SM J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591 [TBL] [Abstract][Full Text] [Related]
14. Disappearance of the post-lesional laminin immunopositivity of brain vessels is parallel with the formation of gliovascular junctions and common basal lamina. A double-labelling immunohistochemical study. Szabó A; Kálmán M Neuropathol Appl Neurobiol; 2004 Apr; 30(2):169-77. PubMed ID: 15043714 [TBL] [Abstract][Full Text] [Related]
15. Pregnancy and maternal behavior induce changes in glia, glutamate and its metabolism within the cingulate cortex. Salmaso N; Cossette MP; Woodside B PLoS One; 2011; 6(9):e23529. PubMed ID: 21909402 [TBL] [Abstract][Full Text] [Related]
16. Nestin expression in Müller glial cells in postnatal rat retina and its upregulation following optic nerve transection. Xue LP; Lu J; Cao Q; Kaur C; Ling EA Neuroscience; 2006 Nov; 143(1):117-27. PubMed ID: 16949759 [TBL] [Abstract][Full Text] [Related]
17. Comparative marker analysis of the ependymocytes of the subcommissural organ in four different mammalian species. Chouaf L; Didier-Bazes M; Aguera M; Tardy M; Sallanon M; Kitahama K; Belin MF Cell Tissue Res; 1989 Aug; 257(2):255-62. PubMed ID: 2570632 [TBL] [Abstract][Full Text] [Related]
18. Müller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina. Xue LP; Lu J; Cao Q; Hu S; Ding P; Ling EA Neuroscience; 2006 May; 139(2):723-32. PubMed ID: 16458441 [TBL] [Abstract][Full Text] [Related]
19. Ultrastructural and immunocytochemical changes in retinal pigment epithelium, retinal glia, and fibroblasts in vitreous culture. Vinores SA; Campochiaro PA; McGehee R; Orman W; Hackett SF; Hjelmeland LM Invest Ophthalmol Vis Sci; 1990 Dec; 31(12):2529-45. PubMed ID: 1702409 [TBL] [Abstract][Full Text] [Related]
20. Retinal vascular changes after glial disruption in rats. Shen W; Li S; Chung SH; Gillies MC J Neurosci Res; 2010 May; 88(7):1485-99. PubMed ID: 20029988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]