These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 2567331)
1. Interpretation of the increase in the frequency of neoplastic transformations observed for some ionising radiations at low dose rates. Sykes CE; Watt DE Int J Radiat Biol; 1989 Jun; 55(6):925-42. PubMed ID: 2567331 [TBL] [Abstract][Full Text] [Related]
2. Repair-dependent cell radiation survival and transformation: an integrated theory. Sutherland JC Phys Med Biol; 2014 Sep; 59(17):5073-90. PubMed ID: 25122036 [TBL] [Abstract][Full Text] [Related]
3. Enhanced transformation of mouse 10T1/2 cells by 12-O-tetradecanoylphorbol-13-acetate following exposure to X-rays or to fission-spectrum neutrons. Han A; Elkind MM Cancer Res; 1982 Feb; 42(2):477-83. PubMed ID: 7055800 [TBL] [Abstract][Full Text] [Related]
4. Enhanced tumorigenesis by small, protracted doses of densely ionizing radiation. Elkind MM Chin Med J (Engl); 1994 Jun; 107(6):414-9. PubMed ID: 7956479 [TBL] [Abstract][Full Text] [Related]
5. Neoplastic transformation is enhanced by multiple low doses of fission-spectrum neutrons. Hill CK; Carnes BA; Han A; Elkind MM Radiat Res; 1985 Jun; 102(3):404-10. PubMed ID: 4070554 [TBL] [Abstract][Full Text] [Related]
6. Towards a new dose and dose-rate effectiveness factor (DDREF)? Some comments. Chadwick KH J Radiol Prot; 2017 Jun; 37(2):422-433. PubMed ID: 28488593 [TBL] [Abstract][Full Text] [Related]
7. The inverse dose-rate effect for oncogenic transformation by neutrons and charged particles: a plausible interpretation consistent with published data. Brenner DJ; Hall EJ Int J Radiat Biol; 1990 Nov; 58(5):745-58. PubMed ID: 1977819 [TBL] [Abstract][Full Text] [Related]
8. Repair processes and radiation quality in neoplastic transformation of mammalian cells. Han A; Hill CK; Elkind MM Radiat Res; 1984 Aug; 99(2):249-61. PubMed ID: 6463205 [TBL] [Abstract][Full Text] [Related]
9. Physical, biophysical, and cell-biological factors that can contribute to enhanced neoplastic transformation by fission-spectrum neutrons. Elkind MM Radiat Res; 1991 Oct; 128(1 Suppl):S47-52. PubMed ID: 1924748 [TBL] [Abstract][Full Text] [Related]
10. Absence of a dose-fractionation effect on neoplastic transformation induced by fission-spectrum neutrons in C3H 10T1/2 cells. Saran A; Pazzaglia S; Coppola M; Rebessi S; Di Majo V; Garavini M; Covelli V Radiat Res; 1991 Jun; 126(3):343-8. PubMed ID: 2034792 [TBL] [Abstract][Full Text] [Related]
11. Oncogenic transformation by fractionated doses of neutrons. Miller RC; Brenner DJ; Geard CR; Komatsu K; Marino SA; Hall EJ Radiat Res; 1988 Jun; 114(3):589-98. PubMed ID: 3375445 [TBL] [Abstract][Full Text] [Related]
12. The RBE of 3.4 MeV alpha-particles and 0.565 MeV neutrons relative to 60Co gamma-rays for neoplastic transformation of human hybrid cells and the impact of culture conditions. Frankenberg-Schwager M; Spieren S; Pralle E; Giesen U; Brede HJ; Thiemig M; Frankenberg D Radiat Prot Dosimetry; 2010 Jan; 138(1):29-39. PubMed ID: 19828717 [TBL] [Abstract][Full Text] [Related]
13. Lack of dose rate modification (0.0049 vs. 0.12 Gy/min) of fission-neutron-induced neoplastic transformation in C3H/10T1/2 cells. Balcer-Kubiczek EK; Harrison GH Int J Radiat Biol; 1991 Apr; 59(4):1017-26. PubMed ID: 1674268 [TBL] [Abstract][Full Text] [Related]
14. The effects of the temporal distribution of dose on oncogenic transformation by neutrons and charged particles of intermediate LET. Miller RC; Brenner DJ; Randers-Pehrson G; Marino SA; Hall EJ Radiat Res; 1990 Oct; 124(1 Suppl):S62-8. PubMed ID: 2236513 [TBL] [Abstract][Full Text] [Related]
15. Possible error-prone repair of neoplastic transformation induced by fission-spectrum neutrons. Hill CK; Han A; Elkind MM Br J Cancer Suppl; 1984; 6():97-101. PubMed ID: 6582923 [TBL] [Abstract][Full Text] [Related]
16. Neoplastic transformation of cells in vitro at low and high dose rates of fission neutrons: an interpretation. Burch PR; Chesters MS Int J Radiat Biol Relat Stud Phys Chem Med; 1986 Mar; 49(3):495-500. PubMed ID: 3485595 [No Abstract] [Full Text] [Related]
17. Application of Bayesian inference to characterize risks associated with low doses of low-LET radiation. Schöllnberger H; Scott BR; Hanson TE Bull Math Biol; 2001 Sep; 63(5):865-83. PubMed ID: 11565407 [TBL] [Abstract][Full Text] [Related]
18. Oncogenic transformation of C3H 10T1/2 cells by acute and protracted exposures to monoenergetic neutrons. Miller RC; Hall EJ Radiat Res; 1991 Oct; 128(1 Suppl):S60-4. PubMed ID: 1924750 [TBL] [Abstract][Full Text] [Related]
19. Neoplastic transformation of C3H 10T1/2 cells: a study with fractionated doses of monoenergetic neutrons. Saran A; Pazzaglia S; Pariset L; Rebessi S; Broerse JJ; Zoetelief J; Di Majo V; Coppola M; Covelli V Radiat Res; 1994 May; 138(2):246-51. PubMed ID: 8183994 [TBL] [Abstract][Full Text] [Related]
20. Energy and dose-rate dependence of neoplastic transformation and mutations induced in mammalian cells by fast neutrons. Hill CK; Zhu L Radiat Res; 1991 Oct; 128(1 Suppl):S53-9. PubMed ID: 1924749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]