These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25673473)

  • 1. The fate of phenothiazine-based redox shuttles in lithium-ion batteries.
    Casselman MD; Kaur AP; Narayana KA; Elliott CF; Risko C; Odom SA
    Phys Chem Chem Phys; 2015 Mar; 17(10):6905-12. PubMed ID: 25673473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium-ion batteries.
    Narayana KA; Casselman MD; Elliott CF; Ergun S; Parkin SR; Risko C; Odom SA
    Chemphyschem; 2015 Apr; 16(6):1179-89. PubMed ID: 25504135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.
    Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretic calculation for understanding the oxidation process of 1,4-dimethoxybenzene-based compounds as redox shuttles for overcharge protection of lithium ion batteries.
    Li T; Xing L; Li W; Peng B; Xu M; Gu F; Hu S
    J Phys Chem A; 2011 May; 115(19):4988-94. PubMed ID: 21517049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid.
    Forgie JC; El Khakani S; MacNeil DD; Rochefort D
    Phys Chem Chem Phys; 2013 May; 15(20):7713-21. PubMed ID: 23595224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Multielectron Intercalation Reactions Be the Basis of Next Generation Batteries?
    Whittingham MS; Siu C; Ding J
    Acc Chem Res; 2018 Feb; 51(2):258-264. PubMed ID: 29327579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcharge performance of 3,7-disubstituted N-ethylphenothiazine derivatives in lithium-ion batteries.
    Ergun S; Elliott CF; Kaur AP; Parkin SR; Odom SA
    Chem Commun (Camb); 2014 May; 50(40):5339-41. PubMed ID: 24248273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Safety of Lithium-Ion Battery via a Redox Shuttle Additive 2,5-Di- tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB).
    Leonet O; Colmenares LC; Kvasha A; Oyarbide M; Mainar AR; Glossmann T; Blázquez JA; Zhang Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9216-9219. PubMed ID: 29509397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes.
    Godet-Bar T; Leprêtre JC; Le Bacq O; Sanchez JY; Deronzier A; Pasturel A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25283-96. PubMed ID: 26355417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries.
    Ortiz D; Steinmetz V; Durand D; Legand S; Dauvois V; Maître P; Le Caër S
    Nat Commun; 2015 Apr; 6():6950. PubMed ID: 25907411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interphase evolution at two promising electrode materials for Li-ion batteries: LiFePO4 and LiNi1/2 Mn1/2O2.
    Dupré N; Cuisinier M; Martin JF; Guyomard D
    Chemphyschem; 2014 Jul; 15(10):1922-38. PubMed ID: 24789623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal charging profiles for mechanically constrained lithium-ion batteries.
    Suthar B; Ramadesigan V; De S; Braatz RD; Subramanian VR
    Phys Chem Chem Phys; 2014 Jan; 16(1):277-87. PubMed ID: 24252870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.
    Yu M; Ren X; Ma L; Wu Y
    Nat Commun; 2014 Oct; 5():5111. PubMed ID: 25277368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.