These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25673488)

  • 1. Fast assembly of anti-voltage photonic crystals in microfluidic channels for ultrafast separation of amino acids and peptides.
    Chen Y; Liao T; Hu C
    Methods Mol Biol; 2015; 1274():119-35. PubMed ID: 25673488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step packing of anti-voltage photonic crystals into microfluidic channels for ultra-fast separation of amino acids and peptides.
    Liao T; Guo Z; Li J; Liu M; Chen Y
    Lab Chip; 2013 Feb; 13(4):706-13. PubMed ID: 23254760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast self-assembly of microscale particles by open-channel flow.
    Choi S; Park I; Hao Z; Holman HY; Pisano AP; Zohdi TI
    Langmuir; 2010 Apr; 26(7):4661-7. PubMed ID: 19921822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-based proteins separation using polymer-entrapped colloidal self-assembled nanoparticles on-chip.
    Shaabani N; Jemere AB; Harrison DJ
    Electrophoresis; 2016 Oct; 37(20):2602-2609. PubMed ID: 27440724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection.
    Shen W; Li M; Ye C; Jiang L; Song Y
    Lab Chip; 2012 Sep; 12(17):3089-95. PubMed ID: 22763412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips.
    Lee SK; Yi GR; Yang SM
    Lab Chip; 2006 Sep; 6(9):1171-7. PubMed ID: 16929396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect healing of self-assembled SiO2 layer by heat-treatment and multi-coating.
    O YT; Shin DC
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3438-41. PubMed ID: 17252784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics.
    Bhattacharyya A; Klapperich CM
    Anal Chem; 2006 Feb; 78(3):788-92. PubMed ID: 16448052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interconnected ordered nanoporous networks of colloidal crystals integrated on a microfluidic chip for highly efficient protein concentration.
    Hu YL; Wang C; Wu ZQ; Xu JJ; Chen HY; Xia XH
    Electrophoresis; 2011 Nov; 32(23):3424-30. PubMed ID: 22057434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel tuneable optical elements based on nanoparticle suspensions in microfluidics.
    Kayani AA; Zhang C; Khoshmanesh K; Campbell JL; Mitchell A; Kalantar-Zadeh K
    Electrophoresis; 2010 Mar; 31(6):1071-9. PubMed ID: 20309917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles.
    Sun J; Zhang H; Tian R; Ma D; Bao X; Su DS; Zou H
    Chem Commun (Camb); 2006 Mar; (12):1322-4. PubMed ID: 16538261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-reactive acrylic copolymer for fabrication of microfluidic devices.
    Liu J; Sun X; Lee ML
    Anal Chem; 2005 Oct; 77(19):6280-7. PubMed ID: 16194089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly resolved separation and sensitive amperometric detection of amino acids with an assembled microfluidic device.
    Zhai C; Qiang W; Lei J; Ju H
    Electrophoresis; 2009 May; 30(9):1490-6. PubMed ID: 19425007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface.
    Xia T; Luo W; Hu F; Qiu W; Zhang Z; Lin Y; Liu XY
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):22037-22041. PubMed ID: 28593758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device.
    Zeng HL; Li H; Wang X; Lin JM
    J Capill Electrophor Microchip Technol; 2007; 10(1-2):19-24. PubMed ID: 17685238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.
    Gong M; Bohn PW; Sweedler JV
    Anal Chem; 2009 Mar; 81(5):2022-6. PubMed ID: 19182940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantiomeric separation of amino acids and nonprotein amino acids using a particle-loaded monolithic column.
    Kato M; Dulay MT; Bennett B; Chen J; Zare RN
    Electrophoresis; 2000 Sep; 21(15):3145-51. PubMed ID: 11001212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.