BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25673682)

  • 1. Molecular basis for three-dimensional elaboration of the Aquilegia petal spur.
    Yant L; Collani S; Puzey J; Levy C; Kramer EM
    Proc Biol Sci; 2015 Mar; 282(1803):20142778. PubMed ID: 25673682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development.
    Ballerini ES; Kramer EM; Hodges SA
    BMC Genomics; 2019 Aug; 20(1):668. PubMed ID: 31438840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy.
    Puzey JR; Gerbode SJ; Hodges SA; Kramer EM; Mahadevan L
    Proc Biol Sci; 2012 Apr; 279(1733):1640-5. PubMed ID: 22090381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex developmental and transcriptional dynamics underlie pollinator-driven evolutionary transitions in nectar spur morphology in Aquilegia (columbine).
    Edwards MB; Ballerini ES; Kramer EM
    Am J Bot; 2022 Sep; 109(9):1360-1381. PubMed ID: 35971626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brassinosteroids regulate petal spur length in Aquilegia by controlling cell elongation.
    Conway SJ; Walcher-Chevillet CL; Salome Barbour K; Kramer EM
    Ann Bot; 2021 Nov; 128(7):931-942. PubMed ID: 34508638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for the Auxin Response Factors ARF6 and ARF8 homologs in petal spur elongation and nectary maturation in Aquilegia.
    Zhang R; Min Y; Holappa LD; Walcher-Chevillet CL; Duan X; Donaldson E; Kong H; Kramer EM
    New Phytol; 2020 Sep; 227(5):1392-1405. PubMed ID: 32356309
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Ballerini ES; Min Y; Edwards MB; Kramer EM; Hodges SA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22552-22560. PubMed ID: 32848061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the development and evolution of novel floral form in Aquilegia.
    Sharma B; Yant L; Hodges SA; Kramer EM
    Curr Opin Plant Biol; 2014 Feb; 17():22-7. PubMed ID: 24507490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia.
    Kramer EM; Holappa L; Gould B; Jaramillo MA; Setnikov D; Santiago PM
    Plant Cell; 2007 Mar; 19(3):750-66. PubMed ID: 17400892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae).
    Mack JL; Davis AR
    Ann Bot; 2015 Mar; 115(4):641-9. PubMed ID: 25725007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homologs of the STYLISH gene family control nectary development in Aquilegia.
    Min Y; Bunn JI; Kramer EM
    New Phytol; 2019 Jan; 221(2):1090-1100. PubMed ID: 30145791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development.
    Carrera E; Ruiz-Rivero O; Peres LE; Atares A; Garcia-Martinez JL
    Plant Physiol; 2012 Nov; 160(3):1581-96. PubMed ID: 22942390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved roles for Polycomb Repressive Complex 2 in the regulation of lateral organ development in Aquilegia x coerulea 'Origami'.
    Gleason EJ; Kramer EM
    BMC Plant Biol; 2013 Nov; 13():185. PubMed ID: 24256402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and expression analysis of bHLH transcription factors reveal their putative regulatory effects on nectar spur development in Aquilegia species.
    Li X; Huang H; Zhang ZQ
    Gene; 2023 Feb; 852():147057. PubMed ID: 36410606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aquilegia as a model system for the evolution and ecology of petals.
    Kramer EM; Hodges SA
    Philos Trans R Soc Lond B Biol Sci; 2010 Feb; 365(1539):477-90. PubMed ID: 20047874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Aquilegia JAGGED homolog promotes proliferation of adaxial cell types in both leaves and stems.
    Min Y; Kramer EM
    New Phytol; 2017 Oct; 216(2):536-548. PubMed ID: 27864962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea.
    Min Y; Kramer EM
    Sci Rep; 2020 Nov; 10(1):19637. PubMed ID: 33184405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Linaria KNOX genes suggests a role in petal-spur development.
    Box MS; Dodsworth S; Rudall PJ; Bateman RM; Glover BJ
    Plant J; 2011 Nov; 68(4):703-14. PubMed ID: 21790812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion.
    Cullen E; Fernández-Mazuecos M; Glover BJ
    Ann Bot; 2018 Nov; 122(5):801-809. PubMed ID: 29370374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium 'Jinba'.
    Wang J; Wang H; Ding L; Song A; Shen F; Jiang J; Chen S; Chen F
    Plant Mol Biol; 2017 Apr; 93(6):593-606. PubMed ID: 28108965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.