These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25673859)

  • 1. Gain modulation of synaptic inputs by network state in auditory cortex in vivo.
    Reig R; Zerlaut Y; Vergara R; Destexhe A; Sanchez-Vives MV
    J Neurosci; 2015 Feb; 35(6):2689-702. PubMed ID: 25673859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic transmission and plasticity in an active cortical network.
    Reig R; Sanchez-Vives MV
    PLoS One; 2007 Aug; 2(7):e670. PubMed ID: 17668052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of persistent cortical activity (up States) on intracortical and thalamocortical synaptic inputs.
    Rigas P; Castro-Alamancos MA
    J Neurophysiol; 2009 Jul; 102(1):119-31. PubMed ID: 19403750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential modulation of spontaneous and evoked thalamocortical network activity by acetylcholine level in vitro.
    Wester JC; Contreras D
    J Neurosci; 2013 Nov; 33(45):17951-66. PubMed ID: 24198382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex.
    Metherate R; Ashe JH
    Synapse; 1993 Jun; 14(2):132-43. PubMed ID: 8392756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Long-term changes in the efficiency of excitatory synaptic transmission in the thalamocortical networks evoked by microstimulation of the neocortex].
    Sil'kis IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(2):321-34. PubMed ID: 7597829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic integration in rat frontal cortex shaped by network activity.
    Léger JF; Stern EA; Aertsen A; Heck D
    J Neurophysiol; 2005 Jan; 93(1):281-93. PubMed ID: 15306631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons.
    Destexhe A
    J Comput Neurosci; 2009 Dec; 27(3):493-506. PubMed ID: 19499317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist.
    Hsieh CY; Cruikshank SJ; Metherate R
    Brain Res; 2000 Oct; 880(1-2):51-64. PubMed ID: 11032989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of cortical network activity on short-term synaptic depression.
    Reig R; Gallego R; Nowak LG; Sanchez-Vives MV
    Cereb Cortex; 2006 May; 16(5):688-95. PubMed ID: 16107589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term changes, induced by microstimulation of the neocortex, in the efficiency of excitatory postsynaptic transmission in the thalamocortical networks.
    Sil'kis IG
    Neurosci Behav Physiol; 1996; 26(4):301-12. PubMed ID: 8912334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-specific plasticity of the auditory cortex elicited by thalamic stimulation in the rat.
    Zhu ZR; Xu FL; Wu JH; Ren SC; Zhang YH; Hu B; Zhang J; Han L; Xiong Y
    Neurosci Lett; 2013 Oct; 555():30-5. PubMed ID: 24036457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices.
    Petrus E; Rodriguez G; Patterson R; Connor B; Kanold PO; Lee HK
    J Neurosci; 2015 Jun; 35(23):8790-801. PubMed ID: 26063913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortex is driven by weak but synchronously active thalamocortical synapses.
    Bruno RM; Sakmann B
    Science; 2006 Jun; 312(5780):1622-7. PubMed ID: 16778049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential synaptic processing separates stationary from transient inputs to the auditory cortex.
    Atzori M; Lei S; Evans DI; Kanold PO; Phillips-Tansey E; McIntyre O; McBain CJ
    Nat Neurosci; 2001 Dec; 4(12):1230-7. PubMed ID: 11694887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational models of thalamocortical augmenting responses.
    Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    J Neurosci; 1998 Aug; 18(16):6444-65. PubMed ID: 9698334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking the response properties of cells in auditory cortex with network architecture: cotuning versus lateral inhibition.
    de la Rocha J; Marchetti C; Schiff M; Reyes AD
    J Neurosci; 2008 Sep; 28(37):9151-63. PubMed ID: 18784296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs.
    Yu XJ; Meng XK; Xu XX; He J
    Neuroscience; 2011 Oct; 193():122-31. PubMed ID: 21820493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus.
    Fan D; Wang Q; Su J; Xi H
    J Comput Neurosci; 2017 Dec; 43(3):203-225. PubMed ID: 28939929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex.
    Kumar M; Xiong S; Tzounopoulos T; Anderson CT
    J Neurosci; 2019 Jan; 39(5):854-865. PubMed ID: 30504277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.