These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25674436)

  • 1. Intensity-Duration-Frequency (IDF) rainfall curves, for data series and climate projection in African cities.
    De Paola F; Giugni M; Topa ME; Bucchignani E
    Springerplus; 2014; 3():133. PubMed ID: 25674436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of climate change on IDF curves for urban stormwater management systems design: the case of Dodola Town, Ethiopia.
    Bibi TS; Tekesa NW
    Environ Monit Assess; 2022 Dec; 195(1):170. PubMed ID: 36459269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A downscaling-disaggregation approach for developing IDF curves in arid regions.
    Uraba MB; Gunawardhana LN; Al-Rawas GA; Baawain MS
    Environ Monit Assess; 2019 Mar; 191(4):245. PubMed ID: 30915584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Efficient Statistical Approach to Develop Intensity-Duration-Frequency Curves for Precipitation and Runoff under Future Climate.
    Butcher JB; Zi T; Pickard BR; Job SC; Johnson TE; Groza BA
    Clim Change; 2021 Jan; 164(1-2):1-3. PubMed ID: 34334847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change-induced variations in future extreme precipitation intensity-duration-frequency in flood-prone city of Adama, central Ethiopia.
    Bulti DT; Abebe BG; Biru Z
    Environ Monit Assess; 2021 Nov; 193(12):784. PubMed ID: 34755254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A framework for quantifying climate-informed heavy rainfall change: Implications for adaptation strategies.
    Zhao W; Abhishek ; Kinouchi T; Ang R; Zhuang Q
    Sci Total Environ; 2022 Aug; 835():155553. PubMed ID: 35489487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty evaluation of design rainfall for urban flood risk analysis.
    Fontanazza CM; Freni G; La Loggia G; Notaro V
    Water Sci Technol; 2011; 63(11):2641-50. PubMed ID: 22049760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonstationary precipitation Intensity-Duration-Frequency curves for infrastructure design in a changing climate.
    Cheng L; AghaKouchak A
    Sci Rep; 2014 Nov; 4():7093. PubMed ID: 25403227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change impact on fluvial flooding in the Indian sub-basin: A case study on the Adyar sub-basin.
    Ramachandran A; Palanivelu K; Mudgal BV; Jeganathan A; Guganesh S; Abinaya B; Elangovan A
    PLoS One; 2019; 14(5):e0216461. PubMed ID: 31086383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of climate change and variability on the IFD Curves in NSW, Australia.
    Hajani E
    Sci Total Environ; 2022 Nov; 845():157359. PubMed ID: 35843317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk evaluation and mitigation against flood danger in an arid environment. A case study (El Bayadh region, Algeria).
    Madi M; Hafnaoui MA; Hachemi A
    Environ Monit Assess; 2023 Jan; 195(2):280. PubMed ID: 36622448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Local, Regional, and Scaling Models for Rainfall Intensity-Duration-Frequency Analysis.
    Mascaro G
    J Appl Meteorol Climatol; 2020 Sep; 59(9):1519-1536. PubMed ID: 34163309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-century tree-ring precipitation record reveals increasing frequency of extreme dry events in the upper Blue Nile River catchment.
    Mokria M; Gebrekirstos A; Abiyu A; Van Noordwijk M; Bräuning A
    Glob Chang Biol; 2017 Dec; 23(12):5436-5454. PubMed ID: 28712116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daily rainfall variability over northeastern Argentina in the La Plata River basin.
    García NO; Pedraza RA
    Ann N Y Acad Sci; 2008 Dec; 1146():303-19. PubMed ID: 19076421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensity-duration-frequency approach for risk assessment of air pollution events.
    Masseran N; Mohd Safari MA
    J Environ Manage; 2020 Jun; 264():110429. PubMed ID: 32217317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are extreme rainfall intensities more frequent? Analysis of trends in rainfall patterns relevant to urban drainage systems.
    De Toffol S; Laghari AN; Rauch W
    Water Sci Technol; 2009; 59(9):1769-76. PubMed ID: 19448312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of climate change on landslide hazard in Central Italy.
    Alvioli M; Melillo M; Guzzetti F; Rossi M; Palazzi E; von Hardenberg J; Brunetti MT; Peruccacci S
    Sci Total Environ; 2018 Jul; 630():1528-1543. PubMed ID: 29554770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale.
    Gariano SL; Rianna G; Petrucci O; Guzzetti F
    Sci Total Environ; 2017 Oct; 596-597():417-426. PubMed ID: 28448917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing urban infrastructure investment planning practices for a changing climate.
    He J; Valeo C; Bouchart FJ
    Water Sci Technol; 2006; 53(10):13-20. PubMed ID: 16838684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme rainfall trends of 21 typical urban areas in China during 1998-2015 based on remotely sensed data sets.
    Li W; Zhao M; Scaioni M; Hosseini SR; Wang X; Yao D; Zhang K; Gao J; Li X
    Environ Monit Assess; 2019 Nov; 191(12):709. PubMed ID: 31677005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.