BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 25674814)

  • 21. Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury.
    Sloan RC; Moukdar F; Frasier CR; Patel HD; Bostian PA; Lust RM; Brown DA
    J Mol Cell Cardiol; 2012 May; 52(5):1009-18. PubMed ID: 22406429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.
    Fillmore N; Mori J; Lopaschuk GD
    Br J Pharmacol; 2014 Apr; 171(8):2080-90. PubMed ID: 24147975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GSH or palmitate preserves mitochondrial energetic/redox balance, preventing mechanical dysfunction in metabolically challenged myocytes/hearts from type 2 diabetic mice.
    Tocchetti CG; Caceres V; Stanley BA; Xie C; Shi S; Watson WH; O'Rourke B; Spadari-Bratfisch RC; Cortassa S; Akar FG; Paolocci N; Aon MA
    Diabetes; 2012 Dec; 61(12):3094-105. PubMed ID: 22807033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial oxidative stress and dysfunction in myocardial remodelling.
    Tsutsui H; Kinugawa S; Matsushima S
    Cardiovasc Res; 2009 Feb; 81(3):449-56. PubMed ID: 18854381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alteration of energy substrates and ROS production in diabetic cardiomyopathy.
    Lorenzo O; Ramírez E; Picatoste B; Egido J; Tuñón J
    Mediators Inflamm; 2013; 2013():461967. PubMed ID: 24288443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of diabetes on alteration of metabolism in cardiac myocytes: therapeutic implications.
    Kota SK; Kota SK; Jammula S; Panda S; Modi KD
    Diabetes Technol Ther; 2011 Nov; 13(11):1155-60. PubMed ID: 21751873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial Mechanisms in Diabetic Cardiomyopathy.
    Gollmer J; Zirlik A; Bugger H
    Diabetes Metab J; 2020 Feb; 44(1):33-53. PubMed ID: 32097997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial dynamics in diabetic cardiomyopathy.
    Galloway CA; Yoon Y
    Antioxid Redox Signal; 2015 Jun; 22(17):1545-62. PubMed ID: 25738230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart.
    Anderson EJ; Kypson AP; Rodriguez E; Anderson CA; Lehr EJ; Neufer PD
    J Am Coll Cardiol; 2009 Nov; 54(20):1891-8. PubMed ID: 19892241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mitochondria in diabetic heart failure: from pathogenesis to therapeutic promise.
    Schilling JD
    Antioxid Redox Signal; 2015 Jun; 22(17):1515-26. PubMed ID: 25761843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MITOCHONDRIAL DYNAMICS AND METABOLIC REGULATION IN CARDIAC AND SKELETAL MUSCLE.
    Abel ED
    Trans Am Clin Climatol Assoc; 2018; 129():266-278. PubMed ID: 30166722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SIRT6: A potential therapeutic target for diabetic cardiomyopathy.
    Wu T; Qu Y; Xu S; Wang Y; Liu X; Ma D
    FASEB J; 2023 Aug; 37(8):e23099. PubMed ID: 37462453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy.
    Li CJ; Zhang QM; Li MZ; Zhang JY; Yu P; Yu DM
    Chin Med J (Engl); 2009 Nov; 122(21):2580-6. PubMed ID: 19951573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How exercise may amend metabolic disturbances in diabetic cardiomyopathy.
    Hafstad AD; Boardman N; Aasum E
    Antioxid Redox Signal; 2015 Jun; 22(17):1587-605. PubMed ID: 25738326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression.
    Amorim PA; Nguyen TD; Shingu Y; Schwarzer M; Mohr FW; Schrepper A; Doenst T
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1160-7. PubMed ID: 20850803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulatory networks controlling mitochondrial energy production in the developing, hypertrophied, and diabetic heart.
    Finck BN; Lehman JJ; Barger PM; Kelly DP
    Cold Spring Harb Symp Quant Biol; 2002; 67():371-82. PubMed ID: 12858562
    [No Abstract]   [Full Text] [Related]  

  • 38. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity.
    Karwi QG; Sun Q; Lopaschuk GD
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.
    Doenst T; Pytel G; Schrepper A; Amorim P; Färber G; Shingu Y; Mohr FW; Schwarzer M
    Cardiovasc Res; 2010 Jun; 86(3):461-70. PubMed ID: 20035032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy.
    Westermeier F; Navarro-Marquez M; López-Crisosto C; Bravo-Sagua R; Quiroga C; Bustamante M; Verdejo HE; Zalaquett R; Ibacache M; Parra V; Castro PF; Rothermel BA; Hill JA; Lavandero S
    Biochim Biophys Acta; 2015 May; 1853(5):1113-8. PubMed ID: 25686534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.